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Preface

These are expository notes about spectral sequences, filtered spectra, and synthetic spec-
tra. I can make no claim to originality of the contents, except for the arrangement and
presentation of the results therein. The baseline for these notes is a mini-course I gave at
Utrecht University in the fall of 2024. This first version specifically is essentially a lengthy
excerpt from my PhD thesis, but unfortunately does not yet contain all the material I
covered in the mini-course. The main subjects that are currently missing are: an in-depth
example computation, Goerss—Hopkins obstruction theory, and a look at the construction
of the co-category of synthetic spectra (and variants thereof). I hope to include these
in later versions. For the moment, I would direct readers to [CDvN24] for a sample
computation, and to [PV22] for an introduction to obstruction theories.

Feedback is always appreciated, so please do not hesitate to contact me in case you find
typos, corrections, or have other comments.
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Chapter 1

Introduction

It is no exaggeration to say that the road to modern homotopy theory is paved with
spectral sequences. Unfortunately, one big barrier to using spectral sequences is the
abundance of indices, maps, and diagrams hiding in their definition. This might lead one
to regard the construction of a spectral sequence as a black box, only to be opened in the
most dire of circumstances. This is particularly unfortunate because there is much power
to be had in working directly with the filtrations, much like how working with spectra
has proved to be a better approach than working directly with homology theories.

We believe that this need not be so. With these notes, we set out to show that working
directly with filtrations is not only possible, but practical. An important reason for this
is the T-formalism, which provides a way to off-load much of the notational headache.
More than merely being convenient for working with filtrations, we show that taking T
seriously also makes it possible to understand more exotic categories of filtrations, such
as synthetic spectra.

Our goal, then, is to give a mostly self-contained introduction to spectral sequences,
filtered spectra and synthetic spectra, all through the lens of the T-formalism. The essence
of this part may be summarised by the following slogan.

Filtered spectra are to spectral sequences,
as synthetic spectra are to Adams spectral sequences,
as spectra are to homology theories.

We mean this in the following sense. In the second clause of each analogy, we are referring
to the purely algebraic objects. These lack good categorical properties (e.g., the category
of spectral sequences is not abelian, is not monoidal, etc.). Working with the objects of the
first clause offers a way to remedy these problems, as these give rise to the corresponding
algebraic objects, but constitute a good homotopy theory (having homotopy limits and
colimits, a symmetric monoidal structure, etc.).

In the first analogy, there are some slight caveats. First, as spectra are inherently stable
objects, one can only hope to capture spectral sequences arising in the stable setting,
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so we ignore for these purposes spectral sequences coming from, e.g., towers of spaces.
However, even within this more specialised setting, there are spectral sequences that
do not arise from filtered spectra. In practise, most spectral sequences do come from a
filtered spectrum, so we view this as more of a technicality. In this sense, their relationship
is akin to the one between stable co-categories and triangulated categories.

For synthetic spectra, the situation is the opposite: for every spectrum, its Adams spectral
sequence comes from a preferred synthetic spectrum, but not every synthetic spectrum
captures an Adams spectral sequence. However, far from being a technical point, this is
a key feature of synthetic spectra. A general synthetic spectrum can be thought of as a
modified Adams spectral sequence: the mere fact that it lives in the synthetic category means
that it has a much closer relationship to Adams spectral sequences than a plain filtered
spectrum would have.

Almost all results in this part are well known or folklore. The value, we believe, lies
in having all of these results in one place. In this introduction, we give an overview of
the main results, discuss some of the history of synthetic spectra, and end with a more
detailed outline of these notes.

1.1 Filtered spectra

A filtered spectrum is a functor X: Z°°? — Sp, where Z denotes the poset of the integers
under the usual ordering. We usually depict this as a sequence

= X X x Tt —

We refer to the maps between the individual spectra as the transition maps. This comes
with a notion of bigraded homotopy groups, being given by

Tns X = 10,(X°).

We write FilSp for the co-category of filtered spectra. Note, however, that this use of
oo-categories is merely preferential. In fact, nearly all results on filtered spectra in these
notes are not inherently modern in any way, and could have been obtained long ago,
even right alongside the introduction of spectral sequences arising from filtered chain
complexes.

Remark 1.1. Although we have written everything in terms of filtered spectra, readers
who are more familiar with chain complexes can instead work with filtered chain complexes.
The definition is the same: it is a diagram

o —Cl— st — ...

where each C* is a chain complex, and each transition map is a map of chain complexes.
(Beware, then, that the upper index is not the chain complex degree. Alternatively, one
might write C; for the chain complex in position s.) There is some further change in
terminology:
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¢ Instead of working with homotopy groups, one should work with the homology
groups of chain complexes.

¢ Instead of working with suspensions X, one should work with the shift operator [1].

¢ Instead of working with cofibres, one should work with the mapping cone of chain
complexes. If the map of chain complexes is injective, then this is (quasi-isomorphic
to) the quotient in the usual sense. Up to quasi-isomorphism, one can replace a
filtered chain complex by one where all maps to be injective, so this is not much of a
restriction.

If X is a filtered spectrum, then we let X~* denote its colimit. We think of a X as a tool
to understand its colimit. More precisely, the homotopy groups of X~ are given by the
colimit over the transition maps:

1, X~ = colim 71y, 5 X.
S

Knowing the homotopy groups 71,5 X for all s is more information than knowing the
group 71, X . Even if one is only interested in knowing 71, X, it is nevertheless a good
idea to remember 77, s X for every s, along with all transition maps between them.

However, in practice, the difficulty of understanding the homotopy groups of the spectra
X® is on par with those of X~*°, even for cleverly chosen filtrations. Usually, the homotopy
groups of the cofibres of the transition maps are much easier to compute; we refer to these
cofibres as the associated graded spectra, and write

Gr’ X := cofib(X*™ — X¥).

The (attempted) passage from the homotopy groups 7, Gr’ X to the homotopy groups
Tty X is exactly the structure of a spectral sequence.

We give an informal but in-depth introduction to how the spectral sequence arises from a
filtration in Appendix A. For the moment, we give a rough indication. Fixing an integer
n and applying 7, to the diagram X, we obtain a filtered abelian group. For a fixed s,
certain elements in 77, X° may not be in the image of the map T, X5 — 71, X%; we think
of these as ‘being born” at stage s. An element might be sent to zero after an application
of a number of transition maps 77, X* — 7, X°"" (for some r > 1); we think of these as
‘dying’ at some later point. A spectral sequence encodes the event of an element being
born and dying r steps to the right by a differential of length r.

At this point, it becomes useful to introduce some notation. We reserve the formal
symbol 7, and let it act on the homotopy groups { 7, « X },s via the transition maps:
ifa € m,s X = m,(X°) is an element, then we define T - o to be the image of « under
X$ — X*~1. This turns 7, . X into a bigraded Z[t]-module, where T has bidegree (0, —1).
By the previous discussion, this means that 7"-torsion elements (i.e., elements that are
annihilated by multiplication by 7") correspond to differentials of length r or shorter in
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the spectral sequence. One can make the translation between the spectral sequence and
the Z[7]-module 7, . X more precise; the resulting Rosetta stone is known as the Omnibus
Theorem. Its proof essentially revolves around making the diagram chase of Appendix A
very precise, and also taking into account potential convergence issues. We summarise
this usage of T and the surrounding comparison results by calling it the T-formalism.

There are many advantages to remembering the filtration that gives rise to this spectral
sequence, rather than only remembering the latter. The boundary maps Gr® X — ZX*+1
encode information about differentials of all lengths. We refer to these are total differentials.
Using these instead of the ordinary differentials leads, for instance, to a significantly
strengthened version of the Leibniz rule, which we refer to as the filtered Leibniz rule. None
of this would be possible when working with bare spectral sequences. The T-formalism
helps us in keeping track of total differentials, but is again not inherently necessary:.

More than help us with internal computations, the T-formalism also governs the structure
of the co-category of filtered spectra. This is particularly important for exporting the
T-formalism to other contexts, where it can become significantly more powerful. The
map T can be lifted to be a map in the co-category FilSp. We can perform homotopical
constructions with it, such as forming its cofibre Ct. It turns out that Ct admits an
E.-algebra structure in FilSp. Moreover, the associated graded functor

FilSp — grSp, X +— GrX
can be identified with the functor

FilSp — Modc.(FilSp), X+— CTt® X.

In the main text, we discuss the general theory of exporting this formalism, through what
has become known as deformations. For the purposes of this introduction, we will focus
on our main example: the case of synthetic spectra. This will also allow us to discuss the
differences between our account of the T-formalism and the existing literature.

1.2 Synthetic spectra

The generality of filtered spectra makes them very useful: proving something about
filtered spectra yields applications to all spectral sequences. However, their generality
can also make them a little unwieldy. Say, for instance, that we are working with a
particular type of spectral sequence where the first page has more structure than merely
the homotopy groups of a spectrum. It would then be desirable to work in a modification
of filtered spectra where this additional structure exists in the category itself. This
additional structure should make the category easier to work with, making it a more
powerful tool for studying that specific type of spectral sequence. In the case of Adams
spectral sequences, this is exactly what the co-category of synthetic spectra is.
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Let E be a multiplicative homology theory. The E-based Adams spectral sequence tries
to approximate maps between spectra by maps between their E-homology. Taking one
spectrum to be a sphere, we obtain a spectral sequence that tries to compute homotopy
groups. Under hypotheses on E, this is of the form

Eg's = Ext%*nEH(E*, E*X) — 7TnX,

where the Ext groups refer to Ext groups of E,E-comodules, which roughly speaking is
remembering E-homology (co)operations present on the E-homology of a spectrum. The
original case introduced by Adams [Ada58] is the one where E is F,-homology, which
to this day remains the main tool for computing stable homotopy groups of spheres.
Another popular, more chromatic flavour is the case where E = MU, which is referred
to as the Adams—Novikov spectral sequence (abbreviated ANSS). For general E, both the
computation of the Ext groups as well as its differentials are highly nontrivial tasks. In the
case E = F,, the state of the art in terms of computing the Ext groups is for n + s < 200
by Lin [Lin23], and the state of the art in computing differentials is with almost complete
information up until dimension 90 by Isaksen—-Wang-Xu [IWX23], and with very recent
further information going up until dimension 126 by Lin—-Wang—Xu [LWX25]. In these
notes, our focus is mostly on how to compute differentials.

Rather than thinking of Adams spectral sequences as filtered spectra arising in a particular
way, synthetic spectra let us picture them as living in their own category. There is a stable
co-category Syn (Sp) of E-synthetic spectra, along with functors

vg: Sp — Syn,(Sp) and  ¢: Syn.(Sp) — FilSp,

called the E-synthetic analogue and signature functor, respectively. A series of computations
in Syn, (Sp) shows that the composite ¢ o Vg is, in a precise sense, the E-Adams spectral
sequence functor. We think of ¢ as a forgetful functor, sending a synthetic spectrum to its
“underlying spectral sequence’.

Not only can ¢ be thought of as an underlying spectral sequence functor, it is also the
mechanism through which we import the T-formalism. Namely, ¢ is the right adjoint in
an adjunction

P
FilSp —><U Syn(Sp).

Synthetic spectra come with their own notion of bigraded spheres, and these are the
image under p of filtered bigraded spheres. By adjunction therefore, if X is a synthetic
spectrum, then 71, . X is captured by the filtered homotopy groups 7. (¢ X). Moreover,
the functor p sends 7 in FilSp to a map that is normally called 7 in Syn,(Sp). In this way,
all results in the 7-formalism directly apply to Syn,(Sp) as well. For instance, the total
differentials and the Omnibus Theorem are available in this context too.

This does not mean that the use of filtered spectra does away with synthetic spectra.
Rather, synthetic spectra are a natural home for Adams spectral sequences, and the -
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formalism therein is significantly more powerful. The main aspects in which the structure
of Syn,(Sp) is simpler than FilSp are the following.

¢ There is a t-structure on Syn,(Sp), called the homological t-structure, whose heart is
equivalent to the abelian category of (graded) E.E-comodules. In this t-structure,
for every spectrum X, the synthetic spectrum vg X is connective.

¢ The co-category of Ct-modules in Syn,(Sp) is equivalent to (a version of) the
derived co-category of (graded) E.E-comodules.

These aspects are closely related, but not the same. Together, they can be regarded as
the reason that Syn, (Sp) is closely related to E-Adams spectral sequences: for instance,
the Ext groups on the E;-page page are precisely the mapping objects in the derived
oco-category of comodules. More precisely, it is with these properties that we can compute
o o Vg to be the Adams spectral sequence functor.

Neither of these features is present in FilSp. For instance, while vg X is connective in the
homological t-structure, the filtered spectrum o (vgX) is usually not connective in the
standard t-structure on FilSp. This makes it easier to manipulate and study vgX in the
synthetic context, again showing that Syn, (Sp) is the natural home for Adams spectral
sequences.

As another example, we have a commutative diagram

Syng(Sp) ————— FilSp

CT®fl lC'r@f

Modc:(Syng(Sp)) —~— Modc.(FilSp).

As explained before, the vertical functor on the right can be identified with the associated
graded functor. The diagram now tells us that this factors through Ct-modules in
Syn;(Sp). Because this is an co-category of an algebraic nature, we can much more
effectively compute there, making the associated graded of the signature more accessible.

One can use this additional structure in another way, which has become known as the
Ct-method!! or Ct-philosophy of Gheorghe, Isaksen, Wang and Xu [GWX21; IWX23]. It has
been one of the landmark advances in computational stable homotopy theory. It works as
follows. Fixing a spectrum F, one can set up the vgF-Adams spectral sequence internal to
Syn;(Sp) (where F can be different from E). We can push this spectral sequence along
either one of the two functors

Sp +— Syng(Sp) — Modcr(Syng(Sp)).

[1lWe warn that these terms should not be confused with what we call the T-formalism. The latter is an
overarching term, while Ct-method is a specific technique that is particularly powerful in the synthetic
T-formalism.
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Upon mapping it to spectra, we recover the ordinary F-Adams spectral sequence, while
upon mapping it to Ct-modules, we obtain a purely algebraic spectral sequence, where
we may essentially compute differentials by hand (or by computer). Because these two
are now related to a spectral sequence in Syn(Sp), we can thus deduce differentials in
spectra from differentials in the algebraic realm. Isaksen-Wang—Xu [IWX23] work in the
case E = MU and F = F;; see Section 1.3 below for a further discussion.

A related application of this structure on synthetic Ct-modules, is to the computation of
Toda brackets. Toda brackets in Syn, (Sp) map to Toda brackets under the functor Ct ® —,
whereupon they become Massey products, which can again be computed algebraically
by hand. This leads to a synthetic version of Moss’s Theorem; see [CDvIN24, Section 3].

1.3 History

Our introduction of the T-formalism is quite different from the way it arose historically.
Whereas we presented it first of all as a notational device, its origins are much more
complicated.

It first appeared when C-motivic spectra began to be used to study the stable homotopy
groups of spheres [Isal9; GWX21; IWX20; IWX23]. In motivic spectra, one can run
the motivic F,-Adams spectral sequence for the motivic sphere. There is a functor
Spc — Sp from C-motivic spectra to ordinary spectra called Betti realisation, and this
turns the motivic F,-ASS into the ordinary F»-ASS. It turns out that the motivic version
is remarkably similar to the ordinary one. First off, the motivic version is trigraded,
due to motivic homotopy groups being bigraded. There is an endomorphism 7 of the
motivic sphere, and the motivic dual Steenrod algebra is almost the ordinary one tensored
with Fy[t]. Isaksen [Isal9] realised that this additional grading and the presence of
T introduce constraints, and uses this to deduce motivic Adams differentials, which
upon Betti realisation yield new differentials in the ordinary Adams spectral sequence.
One can get further information out of this approach by combining it with the movitic
Adams-Novikov spectral sequence.

Later, Gheorge-Wang-Xu [GWX21] showed that modules over Ct in (cellular, p-complete)
C-motivic spectra are equivalent to the derived co-category of BP.BP-comodules. Com-
bined with the observation that differentials in the motivic Adams-Novikov spectral
sequence correspond to differentials in the ordinary Adams—-Novikov spectral sequence,
this led to the Ct-method (explained above in synthetic terms), and with it a great ad-
vancement in our understanding of the sphere spectrum; see [IWX23].

There is a certain unreasonable effectiveness of these motivic methods, since motivic
spectra are inherently algebro-geometric objects, and it is not a priori clear why this
algebraic geometry is connected to the Adams—Novikov spectral sequence. This was
explained when different models were given for the subcategory of cellular motivic
spectra (the subcategory in which these applications take place).
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¢ Pstragowski [Pst22] defined defined E-synthetic spectra, and proved that if E = MU,
this gives a model for cellular motivic spectra (at least after p-completion).

¢ Gheorge-Isaksen—Krause—-Ricka [GIKR21] gave a model for (p-complete) cellular
C-motivic spectra in terms of modules in filtered spectra.

¢ Burklund-Hahn-Senger [BHS22] directly compare these synthetic and filtered
models.

This explains why C-motivic homotopy theory was so successfully applied: synthetic
spectra are by nature designed to be a good category of Adams filtrations. See also [Pst22,
Remark 4.62] for a further discussion comparing synthetic spectra with [IWX23].

With the construction of synthetic spectra, it became possible to use the same type of
techniques for other E as well, not just in the case E = MU. Burklund—-Hahn-Senger
[BHS23, Theorem 9.19] prove the Omnibus Theorem to formalise the idea that E-synthetic
analogues capture the E-Adams spectral sequence. Later, Patchkoria-Pstragowski [PP23]
define a more general setting for defining synthetic categories, allowing for much more
general E and for a much more general stable co-category in the place of spectra.

If we only care about the applications to computations and spectral sequences rather than
motivic homotopy theory as a whole, then synthetic spectra offer a more light-weight
technical setup to do these computations with. In these notes, we further argue that most
synthetic techniques originate in the even more light-weight context of filtered spectra.
Not only does this make proofs and constructions more concrete, but it also allows for
straightforward generalisations. For instance, while the Omnibus Theorem of Burklund—
Hahn-Senger only applies to synthetic analogues, the version we will deduce (using the
adjunction p - ¢ above) from our filtered version applies to all (convergent) synthetic
spectra, and moreover applies in the same fashion to any (good enough) deformation.
We give a more detailed comparison of the proofs of these two versions of the Omnibus
Theorem in Remark 4.78.

1.4 OQutline

We begin by reviewing the theory of filtered abelian groups, filtered spectra and spectral
sequences without the use of 7. This is the content of Chapter 2. At this point, we do
not yet introduce the t-formalism: rather, this chapter is aimed at setting up the basic
concepts and terminology to be used later on, and to make various conventions and
subtleties explicit. In particular, we include a short discussion on the Adams spectral
sequence in a non-synthetic sense, to provide all the necessary background for the later
chapters.

Next, in Chapter 3 we introduce the T-formalism in the filtered setting, starting with
filtered abelian groups, and afterwards in filtered spectra. Aside from discussing total
differentials, the main goal of this chapter is to prove the Omnibus Theorem in the filtered
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setting. The device for proving this is the T-Bockstein spectral sequence, which we introduce
in this chapter as well. Finally, we end with a general discussion of deformations, showing
how to export the T-formalism to other co-categories.

With this preparation in hand, in Chapter 4 we come to our other main topic, which is
synthetic spectra. After reviewing the basic categorical properties, we show how the theory
of deformations applies to synthetic spectra, and work this out in detail. The main goal of
this chapter is to compute the signature of a synthetic analogue. After this, the synthetic
Omnibus Theorem follows as a corollary. Finally, in Chapter 5 we discuss certain variants
and properties of synthetic spectra, in particular the comparison between synthetic and
motivic spectra.

1.5 Conventions

These notes are written mainly for a homotopical audience. We have in mind a reader
who has seen spectral sequences before, but is not necessarily intimately familiar with
their construction. In certain sections, familiarity with the Adams spectral sequence from
a practical perspective will be useful, but is not strictly speaking required.

Throughout, we assume a working knowledge of co-categories in the sense of Joyal and
Lurie; the standard references are [HTT] and [HA]. We distinguish between categories
and oo-categories: by the term category, we mean a (1, 1)-category, while by the term
co-category, we mean an (oo, 1)-category.

When a morphism in an co-category admits a two-sided inverse up to homotopy, we
refer to it as being an isomorphism, rather than an equivalence. This should not cause much
confusion, as we do not compare the co-categories we work in with a model category
giving rise to them. The only exception is that we speak of an equivalence of co-categories
rather than an isomorphism of co-categories (which, we admit, is not a fully consistent
choice of terminology).

We use the term space for what is also referred to as an co-groupoid or an anima. The
oo-category of spaces is denoted by .#. The co-category of spectra is denoted by Sp, and
we write ® for the smash product of spectra. By the term E.-ring, we mean an E-ring
spectrum.

We do not distinguish notationally between an abelian group and its corresponding
Eilenberg-MacLane spectrum. For example, we do not write HZ, but simply write Z. The
context will clarify whether we are dealing with a spectrum or an abelian group.

If A is a graded abelian group and # is an integer, then we write A[n] for the graded
abelian group given by
(A[n])k = Ag—n-

We will use the same formula for graded modules, comodules, etc.
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We use Adams indexing for all of our spectral sequences, both in our formulas and in de-
picting spectral sequences. This means a d,-differential has bidegree (—1, 7). Meanwhile,
we use a homological-algebra indexing for Ext groups: for integers s and t, we write

Ext” (M, N) = Ext’(M[t], N).
In the case of Adams spectral sequences, this means we will often have the expression
E}*® = Exty';"(E., E.X).

Our reasoning for this is that Adams indexing is most useful for working with spec-
tral sequences, while the homological-algebra indexing on Ext is what one uses when
computing these Ext groups.

Often, we refer to the E,-page of a spectral sequence as its r-th page or as page r.

For ease of reference, we include here a list of the places where we make or clarify
indexing conventions, sorted roughly by theme.

+ Homological vs. cohomological indexing, decreasing vs. increasing filtrations,
towers vs. filtrations: Remarks 2.3, 2.8, 2.9, 2.28, 2.38 and 2.51, Construction 2.29,
and Definition 2.31.

¢ First vs. second-page indexing: Remarks 2.37 and 3.55.

¢ Filtered t-formalism: Definition 3.13, Notations 3.33, 3.35 and 3.50, Construc-
tion 3.47, and Remark 3.55.

¢ Synthetic indexing: Definition 4.13, Remarks 4.20, 4.26, 4.37 and 5.44, Variant 4.39,
and Theorem 4.77.



Chapter 2

Filtered spectra and spectral sequences

As is well-known, filtrations give rise to spectral sequences. The goal of this chapter is to
review the theory of filtrations in the stable setting and the resulting spectral sequences,
as well as dealing with more subtle issues like convergence.

We begin by studying filtered abelian groups in Section 2.1. Partially we do this as a warm-
up, but mainly because it is the natural structure on the homotopy groups of a filtered
spectrum. After introducing and reviewing their basic category theory in Section 2.2, we
discuss their relation to spectral sequences in Section 2.3. For a more relaxed introduction
to how spectral sequences arise from filtered spectra, we refer to Appendix A. Next, our
goal is to describe our main example: the Adams spectral sequence. This is the topic
of Section 2.5, where we also include some background on spectral sequences arising
from cosimplicial objects. To prepare for this, we include a short digression on a duality
between filtrations and towers of spectra, which we refer to as reflection, in Section 2.4.

There is a myriad of sources on spectral sequences, which would be impossible to list
here. We learned much of this chapter from [Ant24], [Boa99], [Hed20], [Rog12; Rog21].

2.1 Filtered abelian groups

We begin with an elementary algebraic concept. We will use the adjective strict (which
we borrow from [Ant24]) to distinguish it from the later, more general concept of Defini-
tion 2.7.

Definition 2.1. Let A be an abelian group.

(1) A strict filtration on A is a sequence of subgroups

. CFCFCF'cC...CA.

Let { F° } be a strict filtration on A.

11
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(2) If a € Ais an element, then the filtration of a is the integer s such that
ag¢ P but ac P

We say that a has filtration oo if it lies in all the F*, and that it has filtration —co if it
lies in none of the F°.

(3) The associated graded of { F® } is the graded abelian group Gr F given by

Gr'F = FS/F5H,

By definition, the subgroup F* is the subgroup of elements of filtration at least s. It might
therefore be helpful to think of F* as F7S. Note that F* is the limit lim, F¥, while F~® is
the colimit colimg F®.

We regard a strict filtration on A is a tool to help us understand the group A. One can
think of it as starting with the elements of filtration +co and moving down in filtration,
where at each step the associated graded is measuring how many elements we ‘add’. In
the end, this procedure allows us to see all the elements that do not have filtration —oco.
In practice, the associated graded is what one has the most control over. As a result, we
think of elements of filtration +co as bad, and hope to find ourselves in situations where
they do not exist.

An example of a result that formalises this idea is the following. For a further discussion
and other results in this direction, we refer to [Boa99, Section 2].

Proposition 2.2. Let A and B be abelian groups equipped with strict filtrations { F°A } and
{ F°*B }, respectively. Let f: A — B be a map that respects these filtrations. Suppose that
(1) the map f induces an isomorphism F* A =5 I*B;

(2) the first derived limit limi F* A vanishes;

o

(3) the map f induces an isomorphism on associated graded Gr* A — Gr®° B for all s;

(4) both A and B have no elements of filtration —oo.

o~

Then f is an isomorphism of abelian groups, and moreover restricts to an isomorphism F° A —
F*B for every s.

Proof. See [Boa99, Theorem 2.6]. [ ]

Remark 2.3. In the above definition, we used a decreasing indexing on the filtration. One
should think of this as cohomological indexing for filtrations. We follow this convention
because most filtrations we consider (for example, the Adams filtration) are of the form

. CEPCFlCPF'=A.
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Remark 2.4. There is an obvious variant of Definition 2.1 for graded abelian groups. In
this case, the associated graded is naturally a bigraded abelian group.

Remark 2.5. In [Boa99, Section 2], the following terminology is introduced.

+ If a filtration has no elements of filtration —oo (i.e., every element of A appears
in one of the F*, or equivalently, if colims F* = A), then the filtration is said to be
exhaustive.

« If there are no elements of filtration +oo (i.e., if the limit limg F° vanishes), then the
filtration is said to be Hausdorff.

o If the first-derived limit lim! F* vanishes, then the filtration is said to be complete.
(Note that a filtration can be complete without being Hausdorff. In other words, the
limit of a “Cauchy sequence” need not be unique.)

Warning 2.6. In these notes, we will deviate from Boardman’s terminology recalled in the
previous remark: see Definition 2.11 below.

By definition, a strict filtration only grows as we move down in filtration. It turns out to
be useful to allow for a more general concept, one where we allow the groups to shrink
as well.

Definition 2.7.

(1) A filtered abelian group is a functor Z°? — Ab, where we view Z as a poset under
the usual ordering. We write

FilAb := Fun(Z°P, Ab)
for the (presentable, abelian) category of filtered abelian groups.

(2) If A: Z°? — Ab is a filtered abelian group, then we write A* and A~ for its limit
and colimit, respectively.

(3) The tensor product of abelian groups induces a presentably symmetric monoidal
structure on FilAb via Day convolution, viewing Z°P as a symmetric monoidal
category under addition. A filtered commutative ring is a commutative algebra
object in FilAb.

(4) If A is a filtered abelian group, then its associated graded is the graded abelian

group Gr A given by
Gr® A := coker(AST! — A%).

In diagrames, a filtered abelian group A consists of abelian groups A® for s € Z, together
with maps
e Al — A AT

We refer to these maps as transition maps.
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Let us explain our (perhaps slightly nonstandard) terminology.

Remark 2.8 (Filtrations vs. towers). We deliberately use the term filtration instead of tower
in the above. Throughout, we use the word filtration to indicate that we think of the
colimit as the underlying object, and the limit as an error term. When we use the word
tower, we instead regard the limit as the underlying object and the colimit as the error
term. For an example of the difference, see Example 2.61.

Remark 2.9 (Homological vs. cohomological grading). Fitting with Remark 2.3, we regard
the usage of Z°P to index filtered objects as cohomological indexing of filtered objects. This
is also why we use superscripts to indicate the index. If we instead think of these objects
as towers in the sense of the previous remark, then the usage of Z°P is a homological
indexing convention.

Next, let us compare the notion of a filtered abelian group with that of a strict filtration as
in Definition 2.1.

+ A strict filtration is a special case of a filtered abelian group, namely one whose
transition maps are injective. The only difference is that the ambient abelian group
from Definition 2.1 is no longer present in Definition 2.7. We will instead regard the
colimit A~* as the ambient abelian group. Said differently, giving a strict filtration
on an abelian group B in the sense of Definition 2.1 consists of providing a filtered
abelian group A in the sense of Definition 2.7, together with a map A™* — B.

Going forward, we will usually use the term strict filtration to refer to a filtered
abelian group with injective transition maps. When we use the version of Defin-
ition 2.1, we will always check that there are no elements of filtration —co, to be
consistent with the previous story.

¢ Conversely, a filtered abelian group A gives rise to an induced strict filtration { F° }
on its colimit A~%, via

F:=im(A° — A™®) C A, (2.10)

This filtration has, essentially by definition, no elements of filtration —co. Note
however that the assignment A — { F° } loses information: the transition maps in
the filtered spectrum need not be injective.

We still need to deal with the potential presence of elements of filtration +oco; we will use
the following terminology.

Definition 2.11. We say a filtered abelian group A is derived complete if

imA=0 and lim'A=0.

We will revisit this later in Section 3.1, where it is called T-completeness. For a discussion
without the language of 7, see [Boa99, Definition 2.7, Proposition 2.8].
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Remark 2.12. The reason we call this derived complete is that it matches the notion of com-
pleteness for filtered spectra to be introduced in Definition 2.26 below. More specifically,
by post-composing with the inclusion, a filtered abelian group A determines a functor
Z°P — D(AD) to the derived co-category of abelian groups. Then A is derived complete
if and only if the (derived) limit of Z°? — D(Ab) is zero. Because the forgetful functor
D(Ab) — Sp preserves limits, this is equivalent to viewing A as a functor Z°? — Sp
landing in discrete (a.k.a. Eilenberg-MacLane) spectra, and asking for the (homotopy)
limit of this functor to vanish. See Remark 2.48 for an elaboration on this point.

Remark 2.13 (Filtered tensor product). Concretely, the tensor product of A, B € FilAb is

given levelwise by
(A® B)® = colim A' ® B/,
i+j>s
with the natural transition maps between them. A filtered commutative ring is a filtered
abelian group A together with pairings

AS (X)At N As+t

for every s, t € Z, satisfying the obvious commutative ring diagrams. The unit for this
monoidal structure is

e 0 L —— 7 —— -,

with the first Z appearing in filtration 0.

We leave it to the reader to verify that the associated graded assembles to a symmetric
monoidal functor
Gr: FilAb — grAb.

Remark 2.14 (Filtration is subadditive). Suppose that we have a filtered ring structure on a
strict filtration { F® }. Then this structure is the same as a commutative ring structure on
the ambient abelian group such that for all s and t, we have

ES. Ft g FS—H.

Note that this means that the filtration might “jump”: a product in F**! might land in the
subgroup FN for N > s + t. In other words, filtration is subadditive under multiplication.
Products that jump in filtration become zero in the associated graded.

We introduced a strict filtration as a tool to better understand its ambient abelian group.
It is suggestive then that the only purpose of a filtered abelian group as in Definition 2.7
is to give rise to its induced strict filtration via (2.10). Said differently, one might consider
the kernels of the maps A® — F° to be an anomaly, because they determine the zero
element in A~*. This is decidedly not the perspective we will take: the entire filtration
is the object of interest. Many of the benefits from the synthetic perspective come from
remembering the filtration as a whole.
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However, there is one downside to working with filtered abelian groups: the associated
graded cannot measure the kernels of the transition maps. In order to take these into
account as well, we have to move to the derived setting.

2.2 Filtered spectra

Instead of moving to the derived setting by using derived abelian groups, we immediately
go to the more universal case of spectra.

Definition 2.15.

(1) A filtered spectrum is a functor Z°? — Sp, where we view Z as a poset under the
usual ordering. We write
FilSp := Fun(Z°P, Sp)

for the (presentable, stable) co-category of filtered spectra.

(2) If X: Z°P — Sp is a filtered spectrum, then we write X* and X~ for its limit and
colimit, respectively.

(3) The smash product of spectra induces a presentably symmetric monoidal structure
on FilSp via Day convolution. A filtered E.-ring is an E..-algebra object in FilSp.

(4) A graded spectrum is a functor Z4 — Sp, where Z45 is the discrete category
with objects Z. We write

grSp := [ [Sp = Fun(Z45, Sp).
z

for the (presentable, stable) co-category of graded spectra.

(5) If X is a filtered spectrum, then its associated graded is the graded spectrum Gr X
given by
Gr® X := cofib(X*T! — X°).

We often depict a filtered spectrum X: Z°? — Sp as a diagram
e X X0 x Tt —

The abuse of this notation is not great: a filtered spectrum is, up to contractible choice,
determined by the spectra { X" } together with their transition maps; see [Ari21, Proposi-
tion 3.3, Corollary 3.4].

Remark 2.16. The role of spectra in the above definition is not special. Most of the results in
this section apply to a suitable stable co-category in the place of spectra. For concreteness,
and to prevent this chapter from becoming needlessly long, we stick to the case of spectra.
For a discussion in this greater generality, we refer to [Ant24], or parts of [Hed20, Part II].
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Like with filtered abelian groups, if X is a filtered spectrum, then we think of X~ as the
‘underlying spectrum’ of X.

Using that cofibres are functorial, the associated graded assembles into a functor

Gr: FilSp — grSp.
We will see later that this can be upgraded to a symmetric monoidal functor; see Re-
mark 3.26. For an alternative proof, see [Hed20, Section II.1.3].

The functor 77, : Sp — grAb induces a functor
FilSp — Fil(grAb).

We can find corepresenting objects for the individual abelian groups of this functor.
By Yoneda, the transition maps will then be corepresented by a map between these
objects, but we defer a discussion of the resulting maps to the next chapter. Although we
could define these corepresenting objects by hand, it will be convenient to introduce the
following functor.

Definition 2.17. We write i: Z — FilSp for the functor given by

s — 23 Homz(—, s).

By the properties of Day convolution, the functor i is naturally symmetric monoidal.

Remark 2.18. The functor i gives the co-category FilSp a universal property, which says
that colimit-preserving functors out of FilSp correspond to functors out of Z. We discuss
this, as well as the structure that such a functor puts on the target category, in detail later
in Section 3.6.

Definition 2.19 (Filtered bigraded spheres). Let n and s be integers.

(1) The filtered (n, s)-sphere is
S = X"i(s).

We refer to n as the stem, and to s as the filtration.
(2) We write X'**: FilSp — FilSp for the functor given by tensoring with §"* on the left.
(3) We write 71, 5: FilSp — Ab for the functor

Ts(—) == [S™, —].

Unwinding definitions, we see that "~ is the filtered spectrum given by

c— 0 —— S s” S,




2.2. Filtered spectra 18

where the first S appears in position s. In diagrams therefore, " is given by applying
2" levelwise, and by shifting the filtered spectrum s units to the left. Likewise, we see
that for any filtered spectrum X, we have a natural isomorphism

s X =2 71, (X5).

Remark 2.20. This definition of the filtered bigraded spheres is designed to be compatible
with first-page indexing of filtered spectra, i.e., the indexing that makes the underlying
spectral sequence start on the first page. It is possible to change this to a second-page
indexing (or any page); see Remark 2.37 for a further discussion.

The filtered spheres are, in fact, generators for FilSp.
Proposition 2.21.

(1) For every s € Z, the filtered sphere S°* is a compact and invertible object in FilSp, with
inverse S%~*. In particular, the monoidal unit of FilSp is compact.

(2) The bigraded homotopy groups 7t « detect isomorphisms of filtered spectra.

(3) As a stable oo-category, FilSp is generated under colimits by the spheres S** for s € Z.
That is, the objects S™* for n,s € Z generate FilSp under colimits. In particular, FilSp is
compactly generated by dualisables.

(4) The monoidal oco-category FilSp is rigid in the sense that an object is compact if and only if
it is dualisable.

Proof. The first property follows because Map(S%¢, X) 2 () X?, and the second is evident.
Item (3) follows from item (2) using [Yan22, Corollary 2.5]. To prove item (4), first notice
that the unit S%° is compact, so that all dualisable objects are compact. As it is also
generated by compact dualisable objects, it follows that every compact object is dualisable
too; see, e.g., (the footnote to) [NPR24, Terminology 4.8]. [ |

By default, we will equip FilSp with the following t-structure. We borrow the name from
[Bar23], though there appears to be no agreed-upon name for it.

Definition 2.22. The diagonal t-structure on FilSp is the t-structure where a filtered
spectrum X is connective if and only if

s X =0 whenever n < s.

. di di . . .
We write 778 and ¢, ® for the n-connective cover and n-truncation functors with respect
to this t-structure, respectively.

As this specified class of connective objects is presentable and closed under colimits, this
determines a unique accessible t-structure on FilSp by [HA, Proposition 1.4.4.11]. It enjoys
the following properties.
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Proposition 2.23.

(a) A filtered spectrum X is connective if and only if

TTys X =0 whenever n < s.

(b) A filtered spectrum X is O-truncated if and only if

Tys X =0 whenever n > s.

. di . . .
(c) The connective cover 5, °X — X induces an isomorphism

dia

T,s(T50 X) = s (X) whenever n = s.

oo . di . . .
Likewise, the O-truncation X — 1o, X induces an isomorphism

Tus(X) — nnls(riioagX) whenever n < s.

(d) The functor 7, « induces a symmetric monoidal equivalence

FilSp” = grAb, X — (7, X).

(e) The diagonal t-structure is complete.
(f) The diagonal t-structure is compatible with filtered colimits.
(g) The diagonal t-structure is compatible with the monoidal structure.
Proof. See, e.g., [Hed20, Propositions 11.1.22-11.1.24]. [ |

This t-structure is a convenient device for giving functorial definitions of the Whitehead
filtration and Postnikov tower.

Definition 2.24.

(1) The constant filtration is the functor Const: Sp — FilSp given by precomposition
with Z°%P — AU,

(2) The Whithead filtration is the functor Wh: Sp — FilSp given by Tiioag o Const.

(3) The Postnikov tower is the functor Post: Sp — FilSp given by Tii(f‘g o Const.

It is a straightforward exercise to see that these definitions result in the Whitehead
filtration and Postnikov tower as we know them: if X is a spectrum, then Wh X is

= T X = X — T X — -
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and Post X is
o = T X — T X — Tg 1 X — -+

Note that, from the definition, the functors Wh and Post come with natural maps

Wh X — Const X and Const X — Post X.

Remark 2.25. Note that Const is naturally a (strong) symmetric monoidal functor. Since
the diagonal t-structure is monoidal, it follows that Wh: Sp — FilSp is naturally a lax
symmetric monoidal functor.

The functor Const restricts to an equivalence from Sp to the full subcategory of FilSp on
the constant filtered spectra, i.e., those for which all transition maps are isomorphisms.
We will revisit this later under the guise of t-invertible filtered spectra in Section 3.2.1.

Definition 2.26. Let X be a filtered spectrum. We say that X is complete if the limit X*
of X vanishes. We write FilSp for the full subcategory of FilSp on the complete filtered
spectra.

The inclusion lEi\ISp C FilSp admits a left adjoint, called the completion functor
FilSp — FilSp, X — X.

We will explore this concept in more detail later under the name of T-completion of filtered
spectra in Section 3.2.3. In particular, we will see that a map of filtered spectra is an
isomorphism after completion if and only if it is an isomorphism on associated graded;
see Proposition 3.30. For an alternative discussion without the language of 7, see [Hed?20,
Section II.1.2].

Finally, we turn to the relationship between filtered spectra and filtered abelian groups.

Definition 2.27. Let X be a filtered spectrum. The induced strict filtration on the abelian
group 71, X~ * is the (strict) filtration given by

F o, X% = 1im(m, X* — 1, X~ 7).

Note that, because 7,.: Sp — grAb preserves filtered colimits, this is the same as the
strict filtration on 77, X ~* induced by the filtered abelian group 77, o X. In particular, the
induced strict filtration on 71, X~* has no elements of filtration —oo.

In practice, it is not easy to compute the homotopy groups 7, X*® directly, so we should not
compute this filtration from the definition. What is usually much more accessible is the
associated graded of the filtered spectrum, but this carries considerably less information.
One might try and invest the associated graded with as much structure as possible, so
that it starts to remember the homotopy of the filtered spectrum itself. This is precisely
what a spectral sequence does.
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2.3 Spectral sequences

So far, we have not yet delived on our promise that the derived setting is able to measure
both the kernel and cokernel of transition maps. The notion of a spectral sequence makes
this precise. Its purpose is to reconstruct the homotopy groups 77, X~ from the associated
graded of X. The non-injectivity of the transition maps on homotopy groups leads to the
differentials in a spectral sequence. In these notes, we will further argue that instead of only
reconstructing 77, X~* from the associated graded, the better approach is to reconstruct
all of the homotopy groups in the filtered spectrum, i.e., the bigraded homotopy groups
Tls s X.

We do not include an in-depth review or motivation of the setup of a spectral sequence
here. We include a detailed but informal introduction to this in Appendix A.

Remark 2.28. The indexing for exact couples used below is not the most common. Usually,
Serre indexing is used in formulas and definitions, while Adams indexing is used for
displaying the spectral sequence. We prefer to work with one indexing system throughout,
and we prefer Adams indexing as it is the most practical one and arises naturally from
the diagram chase of Appendix A. Moreover, this indexing is more straightforward to
generalise to contexts where homotopy groups have a more complicated indexing (such
as filtered or synthetic spectra later in these notes).

For a reference on exact couples, see, e.g., [McC00, page 37 and following].
Construction 2.29. Let X be a filtered spectrum.

(1) The associated exact couple of X is the exact couple of bigraded abelian groups
defined by
A" (X) == 1, X° and E"(X) := m, Gr' X,

with the natural maps from the long exact sequence between them, fitting into the
following diagram, where each map is annotated by its (n, s)-bidegree.

. X° % . X°

v\ oo

T, Gr’ X

(2) The underlying spectral sequence of X, denoted by { E;*(X), d, },>1, is the spectral
sequence in bigraded abelian groups arising from the exact couple associated with X.
By definition, this spectral sequence is of the form

Eiil,S(X) = nn GI'SX — nnX_oo

and the differential d, has bidegree (—1,r) for r > 1. We refer to 7. X~* as the
abutment of the spectral sequence.
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The term abutment and the above notation are not not meant to indicate any form of
convergence; rather, one should think of this as the object to which the spectral sequence
is trying to converge.

Example 2.30. The associated graded of S°? is given by S in degree 0, and zero elsewhere.
In particular, the first page of the resulting spectral sequence is

ns ~ | ™S ifs=0,
E/” = )
0 if s #0.

The spectral sequence of a general filtered bigraded sphere is a shift of the one for S°°.
These spectral sequences are rather uninteresting: they do not decompose 71, S in a new,
meaningful way. As a result, we mostly think of the filtered bigraded spheres as useful
formal objects, and not out of interest in their underlying spectral sequence. A

To avoid confusion, let us make some indexing conventions explicit.
Definition 2.31. Let X be a filtered spectrum. Letr > 0, and let n,s € Z.

(1) Write Z;* C EJ” for the subset on the r-cycles, i.e., those x such that the differentials
di(x),...,dr(x) vanish. This leads to a sequence of inclusions

n,s n,s ns __ wn,s
- C 7, CZy CZy = Ep”.
We define
2y =lmZ" = Nz~
r

An element of Z¢® is called a permanent cycle.

(2) Write B;® C E}” for the subset on the r-boundaries, i.e., the image of the first r
differentials. This leads to a sequence of inclusions

_ n,s n,s n,s n,s
0=Bj" CB” CBy” C---CE/".
We define
B := colim B/® = U B'S.
r r

Note that there is an inclusion B’ C Z%°.

(3) If r > 1, we define
B} =271 /B,

(4) We define the co-term and the derived co-term, respectively, to be

ns .__ n,s n,s
By’ = Z3' /By,

NS o 111l 71,8
REY = hgn z".
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Warning 2.32. In general, the group E¢Z’ is not a (co)limit of the groups E;°. In fact, as

E/7, is a subquotient of E;'*, there is in general no sensible map from E;"* to or from E7,.

In certain cases, such a map does exist. For instance, suppose that E;” = 0 for s < 0. For
>kl

fixed s, then for r >> 0, we have that E;; is a subgroup of E;”*, and it follows that E5’ is
the limit along the resulting sequence of inclusion maps.

Definition 2.33. Let X be a filtered spectrum, let x € ET’S be an element, and let 6 € 1, X.

(1) Letr > 1. Suppose that x is an r-cycle, so that it defines an element in Z;°. We say
that x survives to page r if its image in E;’ is nonzero. If x is a permanent cycle,
then we say that x survives to page oo if its image in Eo;’ is nonzero.

(2) Suppose that x is a permanent cycle that survives to page co. We then say that x
detects 0 (or that 0 is detected by x) if there exists a lift « € 77, X® of x that maps to 0
under X° — X™*.

Beware that, in the definition of detection, the lift « above need not be unique if it exists.

Remark 2.34. The underlying spectral sequence from Construction 2.29 is functorial in the
filtered spectrum. As exact couples form a 1-category, it suffices to lift this construction to
a functor from hFilSp to exact couples. This is easily checked. Post-composing this with
the functor from exact couples to spectral sequences, we obtain the desired functor

FilSp — SSeq(bigrAb), X — {E*(X), 4, }.

Roughly speaking, this functor forgets the homotopy of the filtered spectrum and only
remembers the homotopy of the associated graded, together with the induced differentials.
The goal of the spectral sequence, then, is to reconstruct the homotopy of the filtered
spectrum from this data. Whether this is even possible (aside from extension problems) is
the question of convergence, which we discuss in Section 2.3.1.

We think of the co-category FilSp as an co-categorical enhancement of the category
SSeq(bigrAb). Although not every (stable) spectral sequence arises from a filtered spec-
trum, in practice, they do.l'! The additional homotopical structure on filtered spectra
has many advantages. For example, it allows us to talk about coherently multiplicative
filtrations; see [Hed20, Part II].

For completeness, we compare the above construction of the underlying spectral sequence
with some other ones appearing in the literature.

[11An example of a spectral sequence that does not arise from a filtration is the p-Bockstein spectral sequence
in the way that it is set up in [Bro61, Section 1] or [McCO00, Chapter 10]. However, this is not an essential issue:
there is an alternative way to set up the p-Bockstein spectral sequence that does come from a filtered spectrum
(namely, from the p-adic filtration on a spectrum or chain complex; see Example 2.61 and Example 3.93).
Arguably, this latter version even has a nicer abutment, converging to 7 (X;\), rather than to F, ® F where F
denotes the free summand of 77, X.
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Remark 2.35 (Alternative constructions). We used exact couples in our definition of the
underlying spectral sequence, as this fits most closely with the explanation given in
Appendix A. There are a number of alternative approaches in the literature, including at
least the following.

¢ Cartan-Eilenberg systems [CE16, Section XV.7], which are also used by Lurie in
[HA, Section 1.2.2].

¢ Coherent cochain complexes in spectra, introduced by Ariotta [Ari21].

¢ The décalage functor on the level of filtered spectra. This was introduced by Antieau,
tirst written down by Hedenlund [Hed20, Part II] and later by Antieau [Ant24].

All of these approaches agree, as a consequence of the following results.

¢ Ariotta [Ari21, Theorem 3.19] constructs an equivalence of co-categories from IEi\lSp
to coherent cochain complexes in spectra.

¢ Let X be a filtered spectrum. This gives rise to a Cartan—-Eilenberg system via [HA,
Definition 1.2.2.9]. Iterating the décalage functor on filtered spectra also results in a
spectral sequence. Antieau [Ant24, Theorem 4.13] shows that the spectral sequence
arising from this Cartan—Eilenberg system is isomorphic to the one arising from
iterating the décalage functor. More generally, he shows this when working with
filtered objects of a stable co-category with sequential limits and colimits that is
equipped with a t-structure.

¢ Let X be a filtered spectrum. This gives rise to both a Cartan-Eilenberg system
as before, as well as to an exact couple via Construction 2.29. Creemers [Cre25,
Theorem 5.1] shows that the spectral sequence arising from this Cartan-FEilenberg
system is isomorphic to the one arising from this exact couple.

Remark 2.36. We use the variant of a spectral sequence that computes homotopy classes
out of a compact object. Alternatively, as in [HA, Section 1.2.2], one can also start with a
stable co-category equipped with a t-structure, and set up a spectral sequence to compute
the heart-valued homotopy groups. One should assume that heart-valued homotopy
groups preserve sequential colimits for this to work in a reasonable generality.

Finally, we make a few remarks regarding indexing and notation.

Remark 2.37 (First vs. second-page indexing). We choose to index spectral sequences
arising from filtered spectra to start on the first page; let us call this first-page indexing.
For various reasons (such as aesthetics, or to better fit alternative definitions of a spectral
sequence), it can be useful to reindex this to start on the second (or any later) page. One
can achieve second-page indexing via the reindexing

Tns .__ n,s+n
E/?, =Bt
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It is straightforward to check that this turns d,-differentials into @+1—differentials; in
particular, this makes the spectral sequence start on the second page. Using this second-
page indexing, the filtered bigraded spheres take the form (using the functor i from
Definition 2.17)

S" = 3"i(n+s).

Concretely, this is the filtered spectrum that is S” in positions n + s and below (with
identities between them), and zero elsewhere. In this grading, categorical suspension
takes the form b~ 1.

Remark 2.38. In accordance with our previous indexing conventions, 7 here is indexed
homologically, whereas s is indexed cohomologically. As such, it would be more honest
to write E; and A;, but we do not do so, as the current notation is well established (and
would leave little room for the page-index ). Depending on the context, it might be more
natural to alter either of these conventions; see, e.g., Remark 2.51.

2.3.1 Convergence

Convergence of a spectral sequence is the question whether one can reconstruct 77, X~
from the spectral sequence.?! More precisely, convergence concerns reconstructing 7, X~
by reconstructing the induced strict filtration on 77, X . We can however only hope to
reconstruct the associated graded of this strict filtration, and other methods are necessary
for solving the extension problems.

In most accounts of spectral sequences, convergence is additional structure on the spectral
sequence. For a spectral sequence arising from a filtered spectrum, all of this structure is
supplied by the filtered spectrum, so that convergence becomes a property.

We closely follow Boardman’s account [Boa99]. He works with (unrolled) exact couples,
but we specialise everything to the setting of filtered spectra. We include a few detailed
remarks, both for the curious reader and for use later in the more technical parts of these
notes. An alternative introduction is given by Hedenlund in [Hed20, Section 1.2.2].

Recall from Definition 2.27 that a filtered spectrum X gives rise to an induced strict filtration
on 71, X~ %, denoted by F°* 71, X~.

Construction 2.39. Let X be a filtered spectrum. Write 9,,5: 7, Gr’ X — T, X5H1
for the boundary map. By a diagram chase (see, e.g., [Boa99, Lemma 5.6] or [Rog?21,
Lemma 2.5.10]), there is a natural isomorphism of graded abelian groups

FS X~ _ kero,g
g, X~  BY

[210ther times, the convergence issue is to prove that the colimit of the filtration is isomorphic to a desired
spectrum. This is, of course, a question that is more specific to the situation at hand, so in this section we
regard the colimit as the desired object to study.
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Using that ker 9,, s/ B’ naturally injects into Eog’, this leads to a natural injective map

o F o, X—=°°
Grs ﬂnX - P,S_i_l;:—w —> Egés (2.40)

Definition 2.41. Let X be a filtered spectrum. We say that the underlying spectral
sequence converges strongly to 77, X~ if

(a) the induced strict filtration { F* 71, X~ } is derived complete in the sense of Defini-
tion 2.11, i.e.,

imFm.X =0 and Ilim'Fr.X *®=0;
S S

(b) the natural map (2.40) is an isomorphism for all n and s.

Warning 2.42. This terminology is abusive: the above definition of strong convergence is
not a condition on the spectral sequence, but rather on the filtered spectrum. In fact, the
above conditions do not make sense if we do not specify which filtered spectrum gives
rise to spectral sequence.

In words, condition (a) says that we can (up to extension problems) reconstruct 77, X~
from the induced strict filtration, and condition (b) says that the spectral sequence is able
to recover the associated graded of this filtration.

It is more accurate to speak of convergence to the induced strict filtration on 77, X%, but
we will usually not do this. If the filtered spectrum is clear from the context, we may also
be brief and simply say that the spectral sequence converges strongly, which should always
be understood as convergence to 77, X~ %.

Remark 2.43. Because the map (2.40) is always injective, we learn the following, even in
the absence of any of the above convergence criteria. If x € E{® is a permanent cycle
that survives to page oo, then for any lift a« € 77, X®, the image of « in 77, X~ is nonzero.
Indeed, by injectivity of (2.40), the image of « defines a nonzero map in Gr® 77, X~ ®. In
other words, any element that x detects is nonzero. (Without convergence hypotheses
however, a lift of x to 77, X°* may not exist.)

[ee]

Remark 2.44. Ttem (a) in particular implies that every nonzero element of 77, X~* is
detected by a permanent cycle that survives to page co. Meanwhile, item (b) implies that
every permanent cycle that survives to page oo detects an element in 77, X~ (which is
nonzero by Remark 2.43).

Remark 2.45. Boardman [Boa99, Definition 5.2] also gives names to other notions of
convergence. In the setting of filtered spectra, these notions are the following. The
spectral sequence is said to converge weakly if (b) in Definition 2.41 holds, and said to
converge if (b) holds and limg F* 77, X% = 0. We will not use this terminology.
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As the name suggests, strong convergence is the strongest type convergence one can hope
for. Our goal then is to find conditions that guarantee strong convergence. In practice, we
only have limited knowledge about the homotopy groups 7, s X = 7,X*, so we would
prefer convergence criteria that involve mostly the spectral sequence rather than the
filtered spectrum itself.

Boardman’s notion of conditional convergence does exactly this. It splits the problem up
into two parts. First, one needs to establish conditional convergence, which is a structural
(and often mild) condition on the filtered spectrum. Second, once this is established,
there are conditions phrased entirely in terms of the spectral sequence that guarantee
strong convergence. These conditions are more computational in nature, and need to be
checked on a case-by-case basis, but are often met. The second step is the reason for using
the word ‘conditional’: the spectral sequence converges strongly, conditional on these
requirements being met.

Definition 2.46. Let X be a filtered spectrum. We say that the underlying spectral
sequence converges conditionally to 77, X~ if the filtered spectrum X is complete, i.e., if
the limit X vanishes.

Warning 2.47. As with strong convergence, this terminology is abusive: conditional
convergence is a condition on the filtration rather than the underlying spectral sequence.

Remark 2.48. Using the Milnor short exact sequence (see, e.g., [Boa99, Theorem 4.9])
0— lignl M1 XT — X — lim 7, X° — 0,
we see that X* vanishes if and only if
lim7.X*=0 and lim'7.X°=0.
Warning 2.49. The previous remark may appear to suggest that the vanishing of X*
implies that the induced strict filtration on 77, X~ is derived complete. This is not true in

general, and this is exactly what leads to Boardman’s convergence criteria. To explain
why, we introduce the following notation:

F 1ty X = 1im(70,, ys X — T X).
There are two problems. The first is that for any w, the natural map
T X® — FC 7ty X :=1im F° 71,4 X
S

need not be surjective. This does happen if RE, vanishes; see [Boa99, Lemma 5.9]. The
second problem is that the natural map

colim F® 71y, 5 X = colim lim F® 71, ;, X — lim colim F°7r;, X = F* 1, X%
w w S S w
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also need not be surjective. (There is an analogous version of this map with the first de-
rived limit in the place of the limit, but this is always surjective; see [Boa99, Lemma 8.11].)
It is surjective in certain cases, such as when the filtered spectrum is left or right concen-
trated in the sense of Definition 2.50 below. In general, Boardman’s whole-plane obstruction
is the obstruction to this implication; see Remark 2.54 below for a further discussion, and
[Boa99, Lemma 8.11] for the precise result alluded to here. Clearly, if both maps above
are surjective, then the vanishing of X* does imply derived completeness of the induced
strict filtration on 77, X~ *.

The ‘conditional” part of conditional convergence becomes easier if the filtered spectrum
is of a special form. The following terminology is nonstandard. For the general case, see
Remark 2.54.

Definition 2.50. Let X be a filtered spectrum.

(1) We say that X is right concentrated if the transition maps X**! — X® are isomorph-
isms for s > 0.

(2) We say that X is left concentrated if the transition maps X* — X**! are isomorph-
isms for s < 0:

These conditions can be checked entirely in terms of the associated graded: being right
concentrated means that ET’S vanishes for s > 0, and being left concentrated means that
it vanishes for s < 0.

Remark 2.51. In practice, we usually reindex a right-concentrated filtered spectrum to be
of the form N
= X=X x Tt —

in which case X* = X! and E]* = 0 for s > 0. Boardman calls the resulting spectral
sequence a half-plane spectral sequence with exiting differentials. Likewise, we index a left-
concentrated filtered spectrum to be of the form

o~

e X XY S x =

in which case X~ = X% and ET’S = 0 for s < 0. Boardman calls the resulting spectral
sequence a half-plane spectral sequence with entering differentials.

Roughly speaking, for right-concentrated filtered spectra, the ‘conditional” part is vacuous,
while for left-concentrated filtered spectra, the only thing one has to check is the vanishing
of a derived limit term. This can be checked in terms of the spectral sequence, without
requiring any further knowledge of the filtration.

Theorem 2.52 (Conditional convergence, Boardman). Let X be a filtered spectrum. Suppose
that X is right concentrated. Then the following are equivalent.

(1a) The spectral sequence underlying X converges conditionally.
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(1b) The spectral sequence underlying X converges strongly.
Suppose instead that X is left concentrated. Then any two of the following imply the third.
(2a) The spectral sequence underlying X converges conditionally.
(2b) The derived oco-term REqs* from Definition 2.31 (4) vanishes for all n and s.
(2¢) The spectral sequence underlying X converges strongly.

Proof. This is [Boa99, Theorem 6.1 and Theorem 7.3], respectively. The translation between
his and our notation is the following (using notation from Warning 2.49):

A =1, X Q =F°m, X
A® =lim 7, s X RQ® = li¥nl Ftr, X
S
RA® = lim' 77, ¢ X. |
S

As explained in [Boa99, Section 7], it is often easy to verify that the derived co-term
vanishes. This happens if the spectral sequence collapses at a finite page (i.e., d, = 0 for
r > rp), or if for every n and s, only finitely many differentials leaving bidegree (1, s) are
nonzero (but where this bound is allowed to depend on 7 and s). In general, as with any
first-derived limit of abelian groups, one can use the Mittag-Leffler condition to check its
vanishing.

In certain cases, the following variant will be useful as well. It is slightly more general
than working with right-concentrated filtered spectra: we only ask that every filtered
abelian group 71, X becomes zero for s > 0, but not necessarily that they become zero at
the same point.

Proposition 2.53. Let X be a filtered spectrum. Suppose that for every n, the groups 77, X®
vanishes for s > 0 (where the bound on s is allowed to depend on n). Then X is complete and the
spectral sequence underlying X converges strongly.

Proof. From Construction 2.39, it is clear that the map (2.40) is an isomorphism if Z5’ =
ker 0, s for all n,s. The inclusion Zs5® C ker d,, s always holds. The reverse inclusion now
follows from a diagram chase involving the definition of the differential: see, e.g., [Rog21,
Lemma 2.5.8]. Finally, the completeness of X follows from Remark 2.48. |

Remark 2.54 (Whole-plane spectral sequences). In the case where the filtered spectrum
does not become constant in either direction, the situation becomes more difficult. Board-
man [Boa99, Section 8, Equation (8.7)] defines a group W he calls the whole-plane obstruction.
For any filtered spectrum X, Theorem 8.10 of op. cit. implies that any two of the following
imply the third.

(a) The spectral sequence underlying X converges conditionally.

(b) The derived co-term RE;’ vanishes for all n and s, and W vanishes.
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(c) The spectral sequence underlying X converges strongly.

He gives a criterion saying that if there is no infinite family of differentials that all cross
each other in their interior, then W = 0; see [Boa99, Lemma 8.1]. For an alternative de-
scription of the whole-plane obstruction using Cartan-Eilenberg systems (see Remark 2.35
for more on Cartan-Eilenberg systems), see [HR19]. They moreover give an alternative
proof for Boardman’s criterion: see [HR19, Proposition 5.3].

2.4 Digression: reflecting

So far, we have been thinking of a filtered spectrum (and consequently its underlying
spectral sequence) as a tool to understand its colimit. It is also possible to orient things
the other way around, using a filtered spectrum to understand its limit instead. In that
case, the colimit is the object that should vanish to guarantee convergence properties.
The convergence discussion of spectral sequences does become slightly more involved
in this context, because the functor 7, : Sp — grAb does not preserve sequential limits.
Nevertheless, for every convergence result we discussed above, Boardman [Boa99] also
gives the limit-oriented version.

Rather than working with this limit-oriented version, we will use a duality to move back
to the colimit-oriented version. We refer to this as reflection. This is well known (being
used, for instance, in [Bou79, Section 5]), but we thought it would be helpful to make this
translation and its basic properties explicit, especially its interaction with completion of
filtered spectra. It will not play a big role in the rest of these notes. Let us also point out
that this duality is a feature specific to the stable setting.

We remind the reader of the terminology we introduced in Remark 2.8: we will refer to
objects of FilSp as filtrations when working in the colimit-oriented context, and as towers
when working to the limit-oriented context. Accordingly, if a notion of passing back and
forth between towers and filtrations is to make sense, it should interchange the limit and
colimit. A natural candidate then is to reflect a filtration in its colimit, and to reflect a
tower in its limit.

Definition 2.55. The associated tower functor, respectively the associated filtration
functor, are the functors defined by

(_)tow: FilSp — FilSp, X +— coﬁb(ZO'*lX — Const X™%),
(=)t FilSp — FilSp, X ~— fib(Const X*® — £%1X).

Concretely, if X is a filtered spectrum, then

(X'%)® = cofib(X**' — X™®)  and  (X)* = fib(X® — X*71).

We include a shift in these definitions because when working with the spectral sequence
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associated to a tower, one usually lets the first page consist of the fibres of the transition
maps, not the cofibres.

Definition 2.56. Let X be a filtered spectrum. The fibre-associated graded of X is the
graded spectrum fibGr X given by

fibGr® X := fib(X* — X571).

In a picture, a tower X together with its fibre-associated graded looks as follows:

fibGr! X fibGr? X fibGr !
X! X0 X1 — ...

The following is a straightforward diagram chase.

Proposition 2.57. Let X be a filtered spectrum. Then there are natural isomorphisms of graded
spectra .
fibGr(X©°W) = GrX  and  Gr(X") = fibGr X.

The reflection functors from Definition 2.55 destroy some of the information contained in
the original object: the associated tower only depends on the completion of the original
object. An analogous statement is true for the associated filtration, for which we introduce
the following terminology.

Definition 2.58. We call a filtered spectrum cocomplete if its colimit vanishes. We write
FilSp for the full subcategory of FilSp on the cocomplete filtered spectra.

Analogously to the case of completion, one can check that the inclusion 151/15p C FilSp
admits a right adjoint given by

Filsp —s FilSp, X — X := fib(X — X ).

We call this functor cocompletion, which then features in a colocalisation

FilSp s——— FilSp.

)

We think of lgi\lSp as the conditionally convergent filtrations, and of IEi/lSp as the condi-
tionally convergent towers. The reflection functors of Definition 2.55 translate between
these in the following way.

Proposition 2.59.
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(1) We have commutative diagrams

(_)tow (_)ﬁ]

FilSp ——— FilSp FilSp ———— FilSp
I
IEi\ISp W Isi/ISp IEi/lSp W IEi\ISp.

(2) If X is a filtered spectrum, then we have natural isomorphisms
(X)) = (X)™  and  (XT)T = (X)™.
In particular, if X is complete, then we have a natural isomorphism
(Xtow)y® = X™,
while if X is cocomplete, then we have a natural isomorphism

(Xﬁl)foo g XOO

(3) The reflection functors restrict to inverse equivalences

lgi\ISp 4><_ IEi/ISp.
( _ ) fil

Proof. For item (1), we only show the first diagram, as the argument for the second is
dual to that for the first. Using that cofibres preserve colimits, it follows immediately
from the definition that X'V is cocomplete for all X. It remains to be verify that the map
X — X becomes an isomorphism after taking associated towers. Write T for X" and
R for (X)*". Then for every s, we have a commutative diagram where all rows and
columns are cofibre sequences

X0 Xs+1 (A)s-i-l

[

Xoo X—oo ()/Z)—oo

A

0 I R®.

It follows that T° — R°® is an isomorphism for all s, proving the claim.

For item (2), we again only show the statement about associated towers. For a general
filtered spectrum X, we have

(X'")* = lim cofib(X**! — X~*) = cofib(X* — X ™).
S
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By item (1), it suffices to consider the case where X is complete. In this case, the latter
term is naturally isomorphic to X%, proving the claim.

Finally, for item (3), we check that the composite ((—)*")fll is isomorphic to the identity
on complete objects; the argument for the other composite on cocomplete is analogous.
Let X be complete, and write T for Xtw and F for Tfl. Then using that X* = 0, we have
a commutative diagram where all rows and columns are cofibre sequences

axe 0 X®
0 —— X™® ——= X™®
Fs T T 1.
This supplies a natural cofibre sequence X — 0 — F, proving the claim. n

Example 2.60. Let X be a spectrum. It is a straightforward exercise to see that the
reflection functors switch the Whitehead filtration and Postnikov tower of X: we have
natural isomorphisms

(WhX)*®" >PostX  and (Post X)fil =2 Wh X.

Note that this uses that the standard t-structure on spectra is complete. If we were to
work in Fil(C) for a stable co-category C equipped with a t-structure, then in order to
interchange Wh X and Post X, we would need to reflect them in X, rather than in their
(co)limit. A

Example 2.61. Let X be a spectrum. The p-Bockstein filtration of X is the filtered spectrum

Pox Pux Py —

indexed to be constant from filtration 0 onwards. Observe that this filtration is complete
if and only if X is p-complete. Its associated tower is

s X/ —— X/ —— X[p —— 0 —— -,

where X/p" appears in filtration n — 1. The limit of this tower is X},. If we take the
associated filtration of this tower, then we obtain the p-adic filtration on XQ:

p

P xn
P

NP A
Xp Xp— . A
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2.5 The Adams spectral sequence

We give a brief introduction to the Adams spectral sequence. While this is not intended as
a first introduction, we take some care to explain some of the subtleties in its construction.
Our model for the Adams spectral sequence will be based on a cosimplicial object. While
this has some small downsides, it leads to an easier expression for the resulting filtered
spectrum, because the cosimplicial décalage has an easy expression (Definition 2.73).
This limitation is not essential by any means, and can avoided by working with filtered
resolutions (Remark 2.85). Later, we will use synthetic spectra to set up this improved
version; see Section 4.4.

2,51 The Tot spectral sequence

Definition 2.62. Let C be a pointed co-category, and let X*: A — C be a cosimplicial
object of C.

(1) The totalisation of X* is the limit

Tot X® = liin Xe.

(2) For n > 0, the n-th partial totalisation is the limit

Tot, X* = lim X*.

Agp

(3) Suppose that C admits (partial) totalisations. Using the filtration
o =0C Ao CAgq C--- CA,
we obtain a tower
«oo — Totp X* — Tot; X* — Totg X* — 0 — - -+

with limit Tot X°®. We call this tower the totalisation tower (or Tot tower) of X®. This
is natural in X, resulting in a functor towTot: C® — Fil(C).

We call this a tower in accordance with Remark 2.8; below in Definition 2.68, we will turn
this tower into a filtration. Note that the Tot tower is in particular a cocomplete object of
Fil(C) in the sense of Definition 2.58.

Remark 2.63 (Cubes). The n-th partial totalisation can be computed as follows. We write

Ainj

Jin) S B/in)

for the full subcategory of the slice on those objects given by injective maps to [1]. Note
that this subcategory is a punctured (n + 1)-cube, and in particular is a finite category.
We have a forgetful functor
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and this functor is homotopy initial; see [HA, Lemma 1.2.4.17]. In words, the n-th partial
totalisation can be computed as the total fibre of a punctured (n + 1)-cube.

Notation 2.64. Let Aj,j € A denote the wide subcategory on those maps that are injective.
We will write j for the inclusion functor.

Recall that a semicosimplial object of C is a functor Ajyj — C. The definition of the Tot
tower can be mimicked for a semicosimplicial object, instead taking the limit over Ay, or
over (Ainj)<n. There is a subtle difference between these two.

Remark 2.65. The inclusion j: Aj,j € A is homotopy initial; see [Dugl7, Example 21.2]. As
a result, we will also write Tot for the limit-functor

SpAi“i — Sp,

and we therefore have a natural factorisation

S A Tot

p Sp.

Sp Ainj

However, the same is not true for the partial totalisations: the inclusion (Ainj)én C Agyis
not homotopy initial; see [Dugl7, Section 21.6]. Limits over (Ainj) <, are bigger in some
sense; see Remark 2.66 and Proposition 2.71.

The semicosimplicial Tot tower is in fact an example of a cosimplicial Tot tower.

Remark 2.66. Right Kan extension along j: Ajyy C A is a right adjoint to the forgetful
functor Sp® — Sp”i, and likewise for Ab in the place of Sp. If X* is a semicosimplicial
spectrum, then we can compute this right Kan extension to be the cosimplicial object

given by
(G:X)"= T x*
[n] = [K]
with the product ranging over all surjective maps. A similar formula holds for semicosim-
plicial abelian groups. We learn a number of things from this computation.

(1) The functor 7T, preserves right Kan extension along j.

(2) The restriction of j, X*® to A, is right Kan extended from the restriction of X* to
A<y. In particular, the Tot tower of j, X is the semicosimplicial Tot tower of X*.

When working with cosimplicial rather than semicosimplicial objects, the Tot tower sets
up a one-to-one correspondence between simplicial objects and certain towers. In the
following, let us write Fil*"(C) for the full subcategory of Fil(C) on those filtered objects
that vanish in negative filtration. (This subcategory should not be confused with the
connective part of the diagonal t-structure on Fil(C).) Then by definition, the Tot tower
functor of Definition 2.62 lands in Fil*(C).
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Theorem 2.67 (Stable Dold-Kan correspondence, Lurie). Let C be a stable co-category.
Then the Tot tower functor restricts to an equivalence

towTot: C* — Fil*°(C).

Proof. This is a reformulation of [HA, Theorem 1.2.4.1]. Indeed, the notion of stability is
self-dual, so the equivalence proved there dualises to an equivalence

towTot: C — Fun(Z;%, C).

Finally, right Kan extension along the inclusion Z;% — Z°P (informally, putting zeroes in
negative filtrations) results in a functor Fun(Z;%, C) — Fil(C) which is fully faithful with
essential image Fil*°(C). [

The Tot tower leads to a spectral sequence. We prefer to work with spectral sequences
arising from filtrations rather than towers, so we apply the reflection duality from Sec-
tion 2.4 to land in this situation.

Definition 2.68. Let X* be a cosimplicial spectrum. By reflecting the Tot tower of X*
via the functor (—)fl from Definition 2.55, we obtain a filtered spectrum that we call the
totalisation filtration (or Tot filtration) of X°. We denote its terms by

Tot" X* := fib(Tot X* — Tot,,—1 X°).

The resulting filtration filTot X* is of the form

s To2 X* — Tot! X* — TotX* —— TotX® —— - .-

which is constant from filtration 0 onwards. We call the spectral sequence associated
to this filtered spectrum the totalisation spectral sequence (or Tot spectral sequence, or
Bousfield—Kan spectral sequence).

Note that the Tot filtration is, by construction, a complete filtration of Tot X°. In general
however, the conditional convergence of the Tot spectral sequence need not be strong.

Remark 2.69. From Theorem 2.67 and Proposition 2.59, it follows that the Tot filtration

functor induces an equivalence from C* to the full subcategory of ISI\I(C) on those objects
that are constant from filtration 0 onwards.

A nice feature of this spectral sequence is that there is a formula for its first page and its
first differential purely in terms of the cosimplicial abelian groups 7; X*°.

Notation 2.70.

(1) Let A® be a semicosimplicial abelian group. The unnnormalised cochain complex
C(A?®) of A® is the cochain complex

o= 0 — CYA®) — CHA®) — C}(A®) — -+



2.5. The Adams spectral sequence 37

given by, for m > 0,
and with differential C"(A®*) — C"*1(A®) given by the alternating sum Y_(—1)'d".

(2) If A®is a cosimplicial group, we define its unnormalised cochain complex to be the
unnormalised cochain complex of the semicosimplicial group j*A*®.

(3) Let A® be a cosimplicial abelian group. The normalised cochain complex N(A*®) of
A?® is the cochain complex

coo =0 — N%(A®*) — N}(A®) — N?*(A°) — ---

given by, for m > 0,
m—1 ]
N™(A*) = [ ker(s': A" — A™ 1)
i=0

and with differential N (A®) — N"*+1( A*) given by the alternating sum ¥(—1)d".
If A® is a cosimplicial abelian group, then we have an evident map of cochain complexes
N(A®) — C(A®).

This turns out to be a quasi-isomorphism, and to even admit a quasi-inverse; see the
dual®® of [HA, Proposition 1.2.3.17].

Proposition 2.71.

(1) Let X* be a cosimplicial spectrum, and let E;”*(X®) denote the resulting Tot spectral
sequence. For all integers n and s, there is a natural isomorphism

EI°(X®) = N°(7tns X°)
that identifies the d-differential with the differential of N (77,45 X*).

(2) Let X* be a semicosimplicial spectrum, and let j,X* denote the right Kan extension of
it to a cosimplicial object (see Remark 2.66). For all integers n and s, there is a natural
isomorphism

7 (7 X") = C (7n4s X°)
that identifies the dy-differential with the differential of C(7t,4s X*).

(3) Let X* be a cosimplicial spectrum. Then under the above identifications, the unit X* —
j«j* X*® induces, on the first page of the Tot spectral sequence, the natural map

NS(T[;/H_S X.) — Cs(ﬂ'rH_s X.)

In particular, this map of spectral sequences is an isomorphism from the second page onward.

BBITo see that the definition of the normalised chain complex of a simplicial object in A used therein
indeed dualises to the normalised cochain complex of a cosimplicial object in 4, use [GJ09, Theorem II1.2.1].
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Proof. This follows by dualising (i.e., applying it to C = Sp°F) the discussion of [HA,
Remark 1.2.4.4, Variant 1.2.4.9]. [ |

Remark 2.72. One can phrase item (3) at the level of filtered spectra using the décalage
functor. Let Déc: FilSp — FilSp denote Antieau’s décalage functor; see [Ant24] or [Hed20,
Part II]. Then if X* is a cosimplicial spectrum, the above implies that the unit X* — j,j*X*
induces an isomorphism of filtered spectra

Déc(filTot(X*)) — Déc(filTot(j.j*X*)).

Indeed, the filtrations before applying décalage are complete, and since décalage preserves
complete filtrations ([Ant24, Lemma 4.18]), it is enough to check this on associated graded;
see Proposition 3.31. After applying décalage, the associated graded of this map is an
isomorphism by item (3) above.

There is a variant of the Tot filtration where we have ‘turned a page’ in the spectral
sequence, and thereby starts on the second page of the Tot spectral sequence. While
there is a more general notion of such a page-turning operation (see Remark 2.35), the
cosimplicial version has a simpler expression. These two definitions of décalage actually
coincide: see Proposition 2.77.

The terminology is taken from Deligne’s operation of the same name for chain complexes
from [Del71, Definition (1.3.3)]. The generalisation to cosimplicial spectra is a result of
Levine [Lev15, Section 6]. Note that he also studies other (for instance, unstable) settings;
we specialise his results to spectra. Moreover, Levine compares his décalage operation to
that of Deligne; see [Lev15, Remark 6.4].

Definition 2.73. Let X*: A — Sp be a semicosimplicial spectrum. We define the décalage
of X* as the filtered spectrum given by

Déc® X* = Tot(Wh X*).

If X*® is a cosimplicial spectrum, then we let Déc® X* denote the décalage of the underlying
semicosimplicial object j*X*®; cf. Remark 2.65.

Concretely, the value at filtration s of Déc® X* is given by Tot(7>;X*), the totalisation of
the (semi)cosimplicial spectrum obtained by applying 7, levelwise to X*.

Remark 2.74. The functor Déc®: Sp®n — FilSp is naturally lax symmetric monoidal.
Indeed, it is the composite

Sptin VI, Fil(Sp)din T, FilSp.

The first functor is lax symmetric monoidal (for the levelwise symmetric monoidal struc-
ture on cosimplicial objects) by Remark 2.25, and the second is lax symmetric monoidal
because it is the right adjoint to the constant functor FilSp — Fil(Sp)2i which is symmet-
ric monoidal. The same applies for cosimplicial objects (or alternatively by noting that
the forgetful functor to semicosimplicial objects is symmetric monoidal).
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The namesake of the décalage construction is that it has turned the page once compared
to the Tot spectral sequence. To state the comparison between these spectral sequences
then, we require a reindexing; see Remark 2.37.

Theorem 2.75 (Levine). Let X* be a (semi)cosimplicial spectrum, and let { E;”* (X*®) },>1 denote
the Tot spectral sequence associated to X®. Then there is an isomorphism of spectral sequences
(wherer > 1)

E/S(Déc” X*) = Bl " (X*).
Proof. This follows from [Lev15, Proposition 6.3], but note that Levine uses a different
indexing from the Adams indexing used above. u

Accordingly, it often makes sense to use second-page indexing for the spectral sequence
underlying Déc”® X*. Phrased like this, the above theorem says that this second-page
indexed Déc® X* is isomorphic to the second page onwards of E;”*(X*).

For later use, we record the following more basic property of the cosimplicial décalage
construction.

Proposition 2.76. Let X* be a (semi)cosimplicial spectrum. Then the filtered spectrum Déc™ X*
is naturally a complete filtration of Tot X®, meaning that its limit vanishes and its colimit is
naturally isomorphic to Tot X°.

Proof. Complete filtered spectra are closed under limits, so completeness follows from
the fact that Whitehead filtrations of spectra are complete. To compute the colimit of this
filtration, note that, for every integer s, we have a fibre sequence

Tosp1 XT — X* — 1< X°.
Taking totalisations, one therefore has a natural fibre sequence
Tot(T>541X°®) — Tot X* — Tot(1<sX*®).
Taking colimits over s, one has a natural cofibre sequence

colim Tot(7>541X®) — Tot X* — colim Tot(7<s X*®).
S S

By definition, the left-hand term gives the colimit of Déc®(X*), so it suffices to show that
the right-hand term vanishes. Since coconnectivity is preserved by limits, we see that
for all s, the spectrum Tot T<s X* is s-truncated. As homotopy groups of spectra preserve
filtered colimits, the colimit is therefore (—oo)-truncated, and hence vanishes. [

Finally, we end by comparing Levine’s cosimplicial décalage to Antieau’s décalage. This
appears to be folklore, but for lack of a citeable reference, we give a proof here. Note,
however, that while Levine’s décalage also applies to unstable settings, Antieau’s décalage
lives entirely in the stable world. Let us write Déc: FilSp — FilSp for Antieau’s décalage
functor.
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Proposition 2.77. Let X* be a (semi)cosimplicial spectrum. Then there is an isomorphism,
natural in X°®, of filtered spectra

Déc® X* = Déc(filTot X*).

The proof uses the exact same argumentation as Antieau’s argument for the Atiyah-
Hirzebruch spectral sequence in [Ant24, Propostion 9.2].

Proof. We assume familiarity with the definition of décalage via connective covers in the
Beilinson t-structure, as explained in detail in [Ant24] or [Hed20, Part II].

Applying filTot to the diagram Wh X* — X* in SpAi“j yields a natural diagram in FilSp
-+ — filTot(151 X*) — filTot(150X*) — - - - — filTot(X"®). (2.78)

We claim that this is the Whitehead filtration of filTot(X*) in the Beilinson t-structure
on FilSp. First, we show that for every integer #, the filtered spectrum filTot(7>,X*) is
Beilinson n-connective. For this, we ought to show that its associated graded in filtration
sis an (n — s)-connective spectrum. Using Proposition 2.71, we compute

T (Gr® filTot(75, X*)) = C¥ (75 (50 X*)),

which evidently vanishes if k +s < n,i.e., if k < n — s, so that the s-th associated graded is
indeed (n — s)-connective. When working with cosimplicial objects and the cosimplicial
Tot filtration, the same applies, using the normalised cochain complex instead.

It follows that the natural map filTot(7>,X*) — filTot(X*®) factors through a map
filTot(t>, X*) — 752 filTot(X*).

We claim this is an isomorphism. As both filtrations are complete (the second one by
[Ant24, Lemma 4.18]), it is enough to show this on associated graded; see Proposition 3.31.
There, it follows using Proposition 2.71 and [Hed20, Proposition I1.2.4].

We conclude that (2.78) is indeed the Beilinson Whitehead filtration of filTot X*. From the
definition of décalage, it follows that

Déc(filTot X*) = colim Tot* (7>, X*) = Tot(1>,X*) = Déc” X°. [
S

Using this comparison result, the properties of décalage from Theorem 2.75 and Proposi-
tion 2.76 also follow from general properties of Antieau’s décalage functor from [Ant24]
and [Hed20, Part II].

Remark 2.79. The cosimplicial décalage functor Déc” still has an advantage over the
composite functor DécofilTot: the former is naturally lax symmetric monoidal (see
Remark 2.74). Although the functor Déc: FilSp — FilSp is also lax symmetric monoidal,
the functor filTot is not,!*! so the lax monoidal structure only arises through the version of
Definition 2.73.
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Remark 2.80 (Beilinson vs. levelwise t-structures). We can deduce more than stated in
the proposition above: we learn that under the stable Dold—Kan correspondence, the
levelwise t-structure on cosimplicial spectra corresponds to the Beilinson t-structure on
a subcategory of FilSp. This is remarked by Lawson in [Law24a, Remark 3.16]. In more

detail: recall from Remark 2.69 that the functor filTot: Sp® — IEi\ISp defines an equivalence
onto those complete filtered spectra that are constant from filtration 0 onwards. In the
proof above, we showed that filTot sends the levelwise Whitehead tower to the Beilinson
Whitehead tower. Since it is an equivalence, the result follows.

2.5.2 The cosimplicial Adams spectral sequence

The most general definition of the E-Adams spectral sequence we will use is the following,
though often we will work with more specific (and more structured) spectra E.

Definition 2.81. Let E be a spectrum with amap S — E, and let X be a spectrum. The
map S — E gives rise to an augmented semicosimplicial spectrum Ay, + — Sp of the
form

S — E—XEQE — -

The semicosimplicial E-based Adams resolution for X is the semicosimplicial spectrum
A . rle] _ ...
ASS2(X) = EMl @ X = ( E®X — EQE®X — )
Define the filtered spectrum
ASSE(X) := filTot(ASSE (X)).

The E-based Adams spectral sequence for X is the spectral sequence underlying this
filtered spectrum. More generally, if Y and X are spectra, then we define the semicosim-
plicial spectrum

ASS2(Y, X) := map(Y, E* @ X)
and the filtered spectrum
ASSE(Y, X) := filTot(ASS2(Y, X)),

and define the E-based Adams spectral sequence for [Y, X] to be the spectral sequence
underlying this filtered spectrum.

We are careful to work with semicosimplicial objects rather than cosimplicial objects,
because upgrading E!*! to a cosimplicial object requires an E;-structure on E; see [MNN17,
Construction 2.7]. Not all E of interest may admit this structure, and the Adams spectral

[411f it were, then it would send Eco-rings in Sp” (for the levelwise monoidal structure) to filtered Eco-rings.
Instead, what we see is that it sends Ee-rings in Sp? to filtered objects in Eeo-rings.
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sequence should not depend on it either. If E does admit this structure, then this upgrades
ASSE(Y, X) to a cosimplicial spectrum, which we will denote by the same notation. We
would then define ASSg (Y, X) using the cosimplicial Tot tower, which has a more efficient
first page compared to the semicosimplicial approach; see Proposition 2.71.

This brings us to a potentially confusing point about the Adams spectral sequence:
usually, one is interested in it only from the second page onward. One should view the
tirst page as ‘ill-defined” in some sense; it may admit many models, and the one from the
above definition is a rather inefficient one at that. What we call the cosimplicial Adams
resolution should be regarded as only one of many potential resolutions; the one we chose
is convenient as it is functorial.

Our definition above is made to align with standard conventions. Alternatively, one can
do away with the first page entirely, as follows.

Variant 2.82. Alternatively, we could have defined the Adams spectral sequence as
arising from the filtered spectrum

Déc® (ASS2(Y, X)).

This filtered spectrum should be viewed as the ‘true” incarnation of the Adams spectral
sequence. It turns out to have better monoidality properties, though this is only possible to
prove in general using more modern machinery; see Section 4.4, particularly Remarks 4.62
and 4.74. To align with standard indexing, one should index the resulting spectral
sequence using second-page indexing; see Remark 2.37.

Remark 2.83. The Adams spectral sequence is not specific to spectra, but as this is the
main case of interest, we will stick to it for our discussion. Baker—Lazarev [BL01] set
up the Adams spectral sequence in modules over an E-ring, and Mathew-Naumann-
Noel [MNN17, Part 1] set up the Adams spectral sequence in a presentably symmetric
monoidal co-category. For an even more general setup, see the next remark.

Remark 2.84. Miller [Mil81; Mil12] showed that the E-based Adams spectral sequence
depends on much less information than the ring spectrum E: it only depends on the
class of morphisms that become nullhomotopic after tensoring with E. This is similar to
how E-localisation of spectra depends on much less information than E. For a further
discussion and extension of these ideas, see [PP23, Sections 2 and 3].

For the interested reader, we compare the cosimplicial approach to a filtered approach.

Remark 2.85 (Cosimplicial approach and completion). The downside to using the (semi)cosimplicial
approach is that it is only able to retrieve the completion of the filtered spectrum giving
rise to the Adams spectral sequence. Let us explain this by comparing it with the other
approach. If E is a spectrum with a map S — E, let E denote the fibre of this map. The
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filtered E-Adams resolution! of the sphere is the filtered spectrum given by

e S FQF— 3 E—S——§ —— ...

indexed to be constant from filtration 0 onwards. If X is a spectrum, then the E-Adams
filtration of X is by definition obtained by tensoring this with X levelwise. Clearly
the resulting filtered spectrum has colimit X, i.e., it is a filtration of X. It need not be
complete however, and this results in a convergence problem. If E is an E;-ring, then the
semicosimplicial object E*! naturally upgrades to a cosimplicial diagram; see [MNN17,
Construction 2.7]. Mathew—-Naumann—-Noel [MNN17, Proposition 2.14] show that, under
the stable Dold—Kan correspondence of Theorem 2.67, the Tot tower of the cosimplicial
spectrum E!*l ® X is matched up with the associated tower (in the sense of Definition 2.55)
of the filtered E-Adams resolution for X. Because the associated tower functor factors
through completion (Proposition 2.59), this shows that the cosimplicial approach recovers
only the completion of the approach based on filtered Adams resolutions in the above
sense.

In the generality of Definition 2.81, it is very hard to say much about the second page
of the resulting spectral sequence. Things improve if we impose conditions on E. The
following is a rather restrictive one, but luckily covers some of the main cases of interest.

Definition 2.86 ([Ada95], Condition III.13.3). Let E be a homotopy associative ring
spectrum.

(1) A finite spectrum P is called finite E-projective if E.P is a projective E,-module.!®]

(2) We say that E is of Adams type if it can be written as a filtered colimit of finite
E-projective spectra E, such that for every a, the natural map

is an isomorphism.

Remark 2.88. If E is an E;-ring, then the condition on a finite-projective E, that the map
(2.87) is an isomorphism is automatic. Indeed, if E is E;, then we have a good co-category
Modg(Sp) of E-modules, which we can use to set up an Ext spectral sequence as in
[EKMM, Chapter IV]. The fact that EE, is projective implies that the resulting Kiinneth
spectral sequence computing E*E, is concentrated in filtration 0, implying that (2.87) is
an isomorphism. (In fact, the definition of Adams type is engineered to be able to set up a
Kiinneth and universal coefficient spectral sequence; see [Ada95, Chapter I11.13].)

[BlVarious people refer to this as the E-Adams tower, but our use of the words tower and filtration (see
Remark 2.8) prevents us from using that terminology here.

[61This should not be confused with what one might call an E-finite projective spectrum, meaning a spectrum
P such that E,P is a finite projective Es-module. This notion need not imply that the spectrum P is itself
finite, but this is a condition we very intentionally require on P.



2.5. The Adams spectral sequence 44

Remark 2.89. 1f E is of Adams type, then E.E is in particular a flat (left and right) E.,-
module. Indeed, homotopy groups preserve filtered colimits, and projective modules are
flat.

Example 2.90.
(1) The sphere is of Adams type: it is the colimit of the one-point diagram { S }.

(2) If E is Fp, or more generally if 77.E is a graded field (e.g., if E is a Morava K-theory),
then every finite spectrum is finite E-projective. Since every spectrum is a filtered
colimit of finite spectra, it follows that E is of Adams type if 77, E is a graded field.

The case E = F, is the one originally considered by Adams in [Ada58], and is often
simply referred to as the Adams spectral sequence. (Strictly speaking, the original
version of [Ada58] is based on cohomology rather than homology, but for E = F),
this difference is less material.)

(3) The ring spectrum MU is of Adams type, being witnessed by it being the colimit
of Thom spectra of Grassmannians. Moreover, every Landweber-exact homotopy-
associative ring spectrum is of Adams type; see [Dev97, Proposition 1.3]. In particu-
lar, Morava E-theories are of Adams type.

The cases E = MU and E = BP are both referred to as the Adams—Novikov spectral
sequence (ANSS). We refer to [Rav78] for an introduction to the Adams-Novikov
spectral sequence and its interplay with the F,-Adams spectral sequence.

(4) A non-example is Z: this follows since 71, (Z ® Z) contains p-torsion for every prime
p. In particular, it is not flat over the integers, so Remark 2.89 shows it cannot be of
Adams type. Likewise, for every prime p, the ring Z ) is not of Adams type.

However, one can modify the notion of Adams type and work with Z and Z ) as if
they were of Adams type; see [BP25].

(5) Another non-example is real K-theory, both in its connective and periodic variants.
Mahowald [Mah81] nevertheless computes the second page of the ko-based Adams
spectral sequence, leading to a proof of the telescope conjecture at height 1 and at
the prime 2; see [Mah82]. A

The reason for imposing these restrictions is to obtain an abelian category that computes
the second page of the Adams spectral sequence. This abelian category is defined for
any Hopf algebroid, not just ones arising from a ring spectrum. For a further and more
detailed treatment of (the category of) comodules over a Hopf algebroid, we refer to
[Hov04, Section 1] or [Rav04, Appendix A.1].

Definition 2.91. Let (A,T) be a graded Hopf algebroid. We write grComod 4 ) for the
category of comodules over (A, T') in graded abelian groups. If n is an integer, then we
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write [n] for the n-fold shift operator,
(M[n])i = M.

The category grComod, , 1y is naturally symmetric monoidal, with the underlying A-
module being given by the tensor product over A.

To ensure that we can do homological algebra in this setting, we need an assumption
on I'. We say that a (graded) Hopf algebroid (A,T) is flatif I is flat as an A-module via
either the left or right unit; note that it does not matter which unit we choose, as they
differ by an automorphism of I'.

Proposition 2.92. Let (A,T') be a graded Hopf algebroid. Suppose that (A,T') is flat. Then the
category grComod, , 1y is a Grothendieck abelian category, and the forgetful functor to grAb
preserves small colimits and finite limits (in particular, it is exact). In particular, grComod 4 )
has enough injectives.

Proof. Graded comodules over (A,T') are equivalent to comodules over the comonad
grMod , — grMod,, M+—T®4 M.

If (A,T) is flat, then this comonad is exact, from which it follows that the category of
comodules is abelian and that the forgetful functor to grMod , is exact; see, e.g., [PP23,
Proposition A.2]. Consequently, the forgetful functor also detects exactness (since it
is conservative). Combining this with the fact that grMod , is a Grothendieck abelian
category and that the comonad I' ® 4 — preserves colimits, one can check directly that
grComod 4 ) is Grothendieck abelian also. u

The forgetful functor grComod, , ) — grMod , has a right adjoint, given on underlying
modulesby M — I' ® 4 M. It follows immediately that the image of an injective A-module
under this right adjoint is an injective comodule.

In general, if I" is not flat over A, then grComod 4 1) is merely an additive category.

Notation 2.93. Let (A,T) be a graded Hopf algebroid, and let M and N be comodules
over it. If s and t are integers, then we write

Ext*

1 (M,N) := Ext] . py (M[t], N).

Note that this is a homological indexing convention for t, and a cohomological indexing
convention for s.

Construction 2.94. If E is a homotopy-associative ring spectrum, then the pair (E., E.E)
is naturally a Hopf algebroid. If E is moreover of Adams type, then E.E is in particular
flat over E,; see Remark 2.89. This gives us a good symmetric monoidal abelian category
of comodules over (E,, E.E). We will abbreviate this category by

grComodg .
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The fact that E is of Adams type tells us more about this category: it tells us that it is
generated under colimits by dualisable objects; see [Pst22, Section 3.1].

Remark 2.95. Let E be a homotopy-associative ring spectrum. Then E being of Adams
type implies that E.E is flat; see Remark 2.89. It is not known whether the converse is
true; see [BLP22] for a discussion (specifically Question (1) following Remark 7 in op.
cit.). As we will need the stronger assumption of Adams type, and because of the lack of
a known counterexample to flatness implying Adams type, we content ourselves with
assuming this potentially stronger condition.

One potentially confusing point of the Adams spectral sequence is that there are two
variants of what one might guess the induced strict filtration on [Y, X]. could be. One of
them is more accessible algebraically, while the other is what comes out of the definition of
Definition 2.81. In some cases, such as when Y is a sphere, these agree; see Proposition 2.99
below. We use the following (nonstandard) names to distinguish between them.

Definition 2.96. Let X, Y and E be spectra.

(1) The algebraic E-Adams filtration on [Y, X] is the strict filtration where, for every
s > 1,amap f isin F*[Y, X] when it can be written as a composite

f=fio-of

where each map f; induces the zero map on E.-homology. We put F°[Y, X] equal to
[Y, X] by definition.

(2) The topological E-Adams filtration on [Y, X] is the strict filtration where, for every
s > 1,amap f isin F*[Y, X] when it can be written as a composite

f:flo"‘ofs

where each map f; becomes a nullhomotopic of spectra after tensoring with E. We
put FO[Y, X] equal to [Y, X] by definition.

Taking Y = S" results in filtrations on 71, X, which is the case we will be interested in
most of the time.

In general, the filtration captured by the spectral sequence is the topological one.

Proposition 2.97. Let E be a spectrum with a homotopy-unital multiplication, and let X and Y
be spectra. The induced strict filtration on [Y, X|. by the filtered spectrum ASSg(Y, X) is the
topological E-Adams filtration.

Proof. We freely use the notation introduced in Remark 2.85. By loc. cit., we may compute
the induced strict filtration on [Y, X]. using the Adams resolution

- —E®E®X —E®X — X. (2.98)
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Note that the map E — S becomes nullhomotopic after tensoring with E: indeed, the
cofibre sequence defining E becomes, after tensoring with E, the cofibre sequence

EQE—E —>EQE.

The unital multiplication on E provides a retraction of the second map, so indeed the first
map is nullhomotopic.

We see therefore that each map in the Adams resolution (2.98) becomes null after tensoring
with E. As a result, a map XY — X that lifts to E® @ X fors > 1is of topological Adams
filtration > s. For the converse, it is enough to consider the case s = 1 and n =0, i.e., we
have amap f: Y — X that becomes nullhomotopic after tensoring with E. Then also the
composite Y = E® Y — E ® X is nullhomotopic, so it follows that there exists a dashed
factorisation
Y
s

E®X — X —> E®X,
so that f lifts to filtration 1 in the induced strict filtration. n

Meanwhile, the algebraic filtration is preferable computationally. Clearly, the topological
Adams filtration of a map is a lower bound for its algebraic Adames filtration. In general,
the converse need not be true. If E is of Adams type, then it is true so long as E.Y is
projective over E,.

Proposition 2.99. Let E be a homotopy-associative ring spectrum of Adams type, and let X
and Y be spectra. Suppose that E.Y is projective over E, (e.g., if t.E is a graded field, or if
Y = S"). Then the following hold.

(1) There is an isomorphism
E}*(Y, X) = Exty; ™ (E.Y, E.X).

where the left-hand side denotes the second page of the E-Adams spectral sequence.
(2) The algebraic and topological E-Adams filtrations on [Y, X]. coincide.
In particular, the above are true if Y = S.

Proof. For the first part, see [Ada95, Chapter III.15]. The second part then follows from
[PP23, Warning 3.21]. [ |

Remark 2.100. The idea of the proof is that one can construct a modified version of the E-
Adams spectral sequence whose second page is always given by Ext groups of comodules,
and whose filtration is always the algebraic one. One might refer to this as the E.-based
Adams spectral sequence. There is a comparison map from E-based to the E,-based version,
and if Y has projective homology, then this is an isomorphism on second pages (and hence
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also on all later pages). For a further explanation of this point, we refer to the work of
Patchkoria—Pstragowski [PP23]; see Section 3 of op. cit., particularly Warning 3.21 therein.

2.5.3 Convergence

Next, we deal with the issue of convergence. In this cosimplicial formulation, the object
ASSE(X) is a complete filtration by Remark 2.69, so it might appear as if there are no
convergence problems. The issue, however, is whether the underlying spectrum of
ASSE(X) is isomorphic to X. Only in this case are we willing to speak of (conditional)
convergence of the Adams spectral sequence.

We closely follow Bousfield’s seminal discussion on convergence [Bou79, Sections 5
and 6]. Although those results are specific to the setting of spectra, some results have
been generalised by Mantovani [Man21, Section 7].

We begin with some terminology.

Definition 2.101. Let X be a spectrum, and let E be spectrum with amap S — E. The
E-nilpotent completion of X is the spectrum

Xp := Tot(El* @ X).
The map S — E!*! induces a natural map X — Xp. We say that X is E-nilpotent complete
if this map is an isomorphism.

Bousfield shows that one may alternatively compute the E-nilpotent completion by a
choice of what he calls an E-nilpotent resolution; see [Bou79, Proposition 5.8].

Essentially by definition, the E-Adams spectral sequence converges conditionally to
map(Y, Xz). If Y is the sphere, then this is simply X{. In both cases then, the question of
convergence is whether the map X — X} is an isomorphism.

One should think of the E-nilpotent completion as a more computable approximation
to the E-localisation of X. As it is a limit of E-local objects, the E-nilpotent completion is
E-local, so that the natural map X — X} factors through a map

LeX — Xp. (2.102)
Unfortunately, this map can fail to be an isomorphism. This failure is connected to some
unexpected behaviour of nilpotent completion: it can fail to be idempotent.

Proposition 2.103 (Bousfield). Let E and X be as above. Then the map (2.102) is an isomorph-
ism if and only if the natural map Xp — (X})¢ is an isomorphism.

Proof. See the discussion following the proof of Proposition 5.5 in [Bou79]. u

In the case where both E and X are bounded below, the E-nilpotent completion and
E-localisation of X coincide and are of an arithmetic nature. For the following, recall that
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if R is an ordinary ring, then its core is its subring

{x€R|x®1=1®xholdsinR®R }.

Theorem 2.104 (Bousfield). Let E be a bounded-below homotopy-associative ring spectrum.

(1) Suppose that the core of the ring rioE is Z[] 1] for some set of primes ]. Then for every
bounded-below spectrum X, the natural map LeX — X} is an isomorphism, and moreover

LeX = X[J71.

(2) Suppose that the core of the ring moE is Z /n for some nonzero integer n. Then for every
bounded-below spectrum X, the natural map LgX — X} is an isomorphism, and moreover

LpX = X,

Proof. See [Bou79, Theorems 6.5 and 6.6]. Note that Bousfield uses the term connective to
mean bounded below. [ ]

Remark 2.105. Bousfield computes all rings that can appear as the core of a ring. These
fall into four types; the above two are the first two types. Bousfield shows [Bou79,
Theorem 6.7] that if the core of myE is of one of the other two types, then the map
LgZ — Zé\ is not an isomorphism.

Example 2.106. The ring MU satisfies the first condition for | = &, so that for all spectra
X that are bounded below, we have

LyuX & Xy & X.

For a fixed prime p, the ring BP satisfies the first condition for | the set of primes different
from p, so that for all bounded below spectra X, we have

LepX = Xgp = X()-

Lastly, the ring F), satisfies the second condition for n = p, so that for all bounded below
spectra X, we have
Lr, X = Xg, = X

Beware that for a general X not bounded below, none of these isomorphisms need to
hold. A



Chapter 3

The T-formalism

So far, we have introduced spectral sequences in the way that they are normally intro-
duced. We will now rephrase them in terms of the T-formalism. In Section 3.1, we introduce
7T in filtered abelian groups. Like in the previous chapter, this is both as a warm-up and to
describe the structure present on the homotopy groups of filtered spectra. In this context,
T is a helpful variable for keeping track of filtrations and hidden extensions; we showcase
some examples in Section 3.1.1. Next, in Section 3.2 we lift this story to filtered spectra,
and begin to rephrase spectral sequences in the language of 7. We compare various
operations in the T-formalism in spectra and abelian groups; for example, the issue of
convergence can also be phrased as the difference between T-completion in filtered spec-
tra and in filtered abelian groups (Warning 3.32). This formalism becomes particularly
convenient when discussing total differentials, which we introduce in Section 3.3, and
where we discuss strengthened versions of the ordinary Leibniz rule.

After introducing this more foundational setup, our goal becomes to prove the Omnibus
Theorem, showing that if X is a filtered spectrum, then the Z[t]-module 7, . X captures all
of the structure of the spectral sequence underlying X. To help us prove this, we introduce
the T-Bockstein spectral sequence in Section 3.4. Although it is not strictly necessary to use
this, it is a helpful organisational tool, and is useful to have available in general. With this
in hand, we prove the Omnibus Theorem in Section 3.5.

Finally, we would like to export all of the aforementioned results and tools to other
settings. We discuss the notion of a deformation in Section 3.6. For deformations arising in
a special way, which we refer to as monoidal deformations, we show that indeed everything
discussed above exports directly. Our main example of a deformation is that of synthetic
spectra and is deferred to the next chapter, but we include a few additional examples at
the end of this chapter.

Many of the results in this chapter are well known to experts. We draw from [Bar23],
[BHS22, Appendices A—-C], [Lurl5], and [Pst25]. Our proof of the Omnibus Theorem is
heavily inspired by [BHS23, Appendix A].

50
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3.1 Filtered abelian groups

Recall that a module over the polynomial ring Z[x] is the same as an abelian group
together with an endomorphism. Using this, we can give a different description of filtered
abelian groups, as follows. We reserve the letter T as a formal variable for the polynomial
ring Z[7]. We turn this into a graded ring by giving 7 degree —1. By forgetting the
transition maps, a filtered abelian group has an underlying graded abelian group, and the
transition maps can be viewed as a graded Z[t]-module structure on this graded abelian
group. The forgetful functor thus factors through a functor FilAb — Modg.|(grAb).

Proposition 3.1. The functor
FilAb — Modg/|(grAb)

is a symmetric monoidal equivalence, where we regard grAb as having the symmetric monoidal
structure without any signs in the swap maps.

Mathematically, there is nothing deep about this statement. The value is in the human
aspect: it can be less mentally taxing to think in terms of algebraic equations involving T,
than it is to picture the diagram that is a filtered abelian group. Even for strict filtrations
this is very helpful, particularly when recording filtration jumps and hidden relations.
We give a few examples in Section 3.1.1.

Various properties of filtered abelian groups can be rephrased using 7. The ones we focus
on are the following.

(1) A filtered abelian group is strict if and only if the corresponding Z[t]-module is
T-power torsion free.

(2) The associated graded of a filtered abelian group A is given by the graded abelian
group A/T.

(3) The underlying object A~™* of a filtered abelian group A can be identified with the
T-inversion of the corresponding Z[7]-module.

(4) A filtered abelian group is derived complete (Definition 2.11) if and only if the corres-
ponding Z|[t]-module is t-adically complete.

The first two claims are obvious; let us elaborate on the other two.

Definition 3.2. The constant filtration functor Const: Ab — FilAb is given by sending
an abelian group A to the constant filtration on A, given by

A A A

It is easy to check that Const restricts to an equivalence from Ab onto the filtered abelian
groups whose transition maps are all isomorphisms; let us say that such a filtered abelian
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group is constant. In terms of 7, this says that 7 acts invertibly on it. For this reason,
we may also refer to such filtered abelian groups as being t-invertible, and we write
FilAb[t~!] for the full subcategory on these objects.

Proposition 3.3. The inclusion FilAb[t~!] C FilAb admits both a left and a right adjoint.
Under the equivalence Const: Ab ~ FilAb[t 1], the adjunctions

—1

T Ay A
Y
FilAb +———— FilAb[t!] become FilAb «— SOt 5 Ap,
\/ \_/!
A A%

Proof. By definition of the limit and colimit, the functor Const admits both a left and right
adjoint, being given by the colimit and limit functor, respectively. The claims then follow
immediately from the fact that Const restricts to an equivalence Ab ~ FilAb[t~!]. u

To allow for a distinction to be made between an abelian group and its corresponding
constant filtered abelian group, we introduce the following notation.

Notation 3.4. We write T~ !: FilAb — FilAb[t!] for the functor sending A to
At :==colim( A —— A —— --.).

We write (—)™=!: FilAb — Ab for the composite
FilAb —* FilAb[t~1] —= Ab.

Both of these functors are naturally symmetric monoidal.
In terms of Z[7]-modules, these functors take the following form.

Variant 3.5. The subcategory of t-invertible filtered abelian groups is (symmetric mon-
oidally) equivalent to the category of graded Z[t*]|-modules. Rephrased like this, the
functors 77! and (—)"=! are given, respectively, by sending a graded Z[t]-module M to

Z[t") @z M,  respectively  Z®z M,

where in the latter we let T act on Z by the identity.[l Note that these two functors are
related by the (symmetric monoidal) equivalence

Mody|,+|(grAb) — Ab

given by evaluation at degree zero.
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This explains what we mean by the colimit of a filtered abelian group being the same as
the T-inversion of the corresponding Z[t]-module. The claim about completion follows
from the following.

Definition 3.6. Let R be a (commutative) ring, let x € R, and let M be an R-module. The
x-adic filtration on M is the filtered R-module

X M X M X M:

which we index to be constant from degree 0 onwards. If M is a commutative R-algebra,
then this is naturally a filtered commutative R-algebra.

Proposition 3.7. Let R bearing, let x € R, and let M be an R-module. Then the x-adic filtration
on M is derived complete if and only if M is x-complete as an R-module, i.e., if the natural map

M — M) = li]r(nM/xk

is an isomorphism.

Warning 3.8. The above should not be confused with the notion of derived x-completion
(such as derived p-completion, a.k.a. L-completion; see [HS99, Appendix A]) in the sense
of [GM92]. In fact, for filtered abelian groups, derived T-completion is in general different
from T-completion; see Warning 3.32 below.

Proof of Proposition 3.7. Consider the diagram

M- M M/x3
: H
M4 M M/ x2
: H
M4 M M/x.

Taking limits in the vertical direction, we get an exact sequence
0—L—M-—M) —K-—0

where

L=lm( - —*M-—*5 M) and K=1lim'(--- > M 5 M).

[1INote that in the second of these cases, we lose a grading, because letting T act by the identity on Z does
not turn Z into a graded Z[t]-module. Said differently, (—)™=" is given by taking the quotient by T — 1, which
is not a homogeneous element, thus resulting in a loss of grading.
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These are precisely the limit and first-derived limit of the x-adic filtration on M. In other
words, we see that M — MY is an isomorphism if and only if the x-adic filtration on M is
derived complete. u

Corollary 3.9. A filtered abelian group is derived complete (Definition 2.11) if and only if its
corresponding graded Z[t]-module is T-adically complete.

Proof. Let A be a filtered abelian group. Applying the previous to the ring R = Z[t] and
the element x = T, the limit and the first-derived limit of the T-adic filtration on A are the
constant filtered abelian groups on the limit and first-derived limit of A, respectively. W

Variant 3.10. There is an obvious variant of all of the above for graded abelian groups,
and all the analogous versions of the previous results hold true. A filtered graded abelian
group is a functor Z°? — grAb. Note that this by definition means that the transition
maps preserve degrees. We write FilgrAb := Fun(Z°P, grAb) for the category of filtered
graded abelian groups.

We give grAb the symmetric monoidal structure with the Koszul sign rule. We then
regard FilgrAb as a symmetric monoidal category under Day convolution.

We turn Z[1] into a bigraded ring by giving 7 bidegree (0, —1). We give bigrAb the
symmetric monoidal structure with the Koszul sign rule according to the first grading.
This results in a symmetric monoidal equivalence

FilgrAb — Mody |, (bigrAb)

where the first grading is the internal grading, and the second grading is the grading
arising from the filtration. There is a sign rule for swapping elements according to their
internal grading; the filtration does not play a role in these signs. This indexing is designed
to fit with the indexing conventions for spectral sequences from Section 2.3.

3.1.1 Examples

Consider the p-adic filtration (see Definition 3.6) on an abelian group A. The induced
strict filtration on A is the strict p-adic filtration, given by

FP=pACA.

Note, however, that the maps in the p-adic filtration itself need not be injective, as A might
contain p-torsion. The additional information in the p-adic filtration is that it remembers
all possible choices of p-divisions of elements.

Example 3.11. The abelian group Z is p-torsion free for all p. The graded Z[t]-algebra
corresponding to the p-adic filtration on Z is

Zltpl/(v-F=p)  where|p =1
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We think of p as a refinement of p € Z that records the fact that p has filtration 1.

The fact that the filtration is constant from filtration 0 onward translates to the fact that
in the Z[7]-module, multiplication by 7 is an isomorphism in degrees zero and below.
The element 1 is not T-divisible however, reflecting the fact that the transition map from
filtration 1 to filtration 0 is not surjective. As with all Z[t]-modules, the filtration of an
element corresponds to the T-divisibility.

This filtration is not T-complete however; for this, we would have to pass to Z,,. A

In Remark 2.14, we remarked that in a strictly filtered ring, the filtration of elements is
subadditive. The corresponding Z[7]-algebra records this very elegantly.

Example 3.12. Consider the ring
A=Z[y,v]/(2y, 8v, 4v = 11°).

We give A a strict filtration by letting both 7 and v be of filtration 1, and all of Z be of
filtration 0. The relation 4 - v = % is then a jump in filtration: the product 4 - v is in F?,
but happens to land in the smaller subgroup F?. In particular, we do not see this relation
on the associated graded.

The corresponding Z[t]-algebra keeps track of this more clearly. Saying that 4v lands in
filtration 3 means that 4v is the T2-multiple of an element in filtration 3. Due to the lack of
T-torsion, in this case there is a unique such element, namely 7°. The resulting graded
Z[7]-algebra is given by

Z[t,n,v]/(2n, 8v, 4v = T2173) where |y| = |v| = 1.

In an informal sense, we were forced to insert a T2-term in the last relation: unlike filtered
rings, graded rings do not allow for a grading-jump under multiplication. Since T has
degree —1, the relation 4v = 727 now respects this rule. Observe that if we put T = 1,
then this indeed recovers the original ring A.

Note that, unlike in Example 3.11, we do not write 7 or v, but instead use the symbols 7
and v to directly record the filtration of the elements in the ring A. We do this because,
once we fix a filtration on A, we think of the filtration of an element as an intrinsic property,
not something to be witnessed by another element. We cannot use this type of notation in
Example 3.11 however, because the symbol p is usually reserved for 1+ - -- + 1, and it is
a bad idea to break this convention. (For instance, using the symbol 2 to denote anything
other than 1 4 1 is not advisable.) A

Elements that are in the kernel of a transition map now translate to elements that are
T-torsion. This will become especially important when dealing with spectral sequences:
there, T-power torsion will encode the presence of differentials.
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3.2 Filtered spectra

By the Yoneda lemma, the natural transition map 7, s — 7, s—1 is induced by a map
Sn,sfl —y Q"8

Definition 3.13.

(1) The map 7: S%~! — S is the image of the morphism —1 — 0 in Z under the functor
i: Z — FilSp from Definition 2.17.

(2) If X is a filtered spectrum, then tensoring 7: S®~! — S with X results in a map
£0-1X — X. We will denote this map by x, or simply by T if there is little risk of
confusion.

In a diagram, writing S%~! in the top row and S in the bottom row, the map T looks like

Z

S

S ——— ...
|

S <— O

— 00—

If X is a filtered spectrum, then the map 7x looks like

fi fo

x0
I

X_1*>

Xl
I

fo X0

fa

XZ
b
Xl
In words: the components of the map Tx are the transition maps of X.

Remark 3.14. Using the above notation, the functor i: Z — FilSp from Definition 2.17 can
be depicted as the diagram in FilSp given by

I

. T SO,fl T S T SO,l

Previously, we considered the homotopy groups of a filtered spectrum as a filtered graded
abelian group. Now, we rephrase this in terms of Z[7]-modules.

Definition 3.15. We define a functor

where the Z[t]-module structure is given by the map 7 of Definition 3.13. This is naturally
a lax symmetric monoidal functor, where bigrAb is given the Koszul sign rule according
to the first grading.
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Our ultimate goal is to make precise that the bigraded Z[7|-module 7, . X captures
the data of the spectral sequence underlying X. Before we can do this, we start by
reformulating the basic building blocks of spectral sequences in terms of 7. We also
compare these notions to the analogous notions for Z[t]-modules from the previous
sections. Note, however, that these do not always coincide: modding out by T and
completing at T are different in the stable than in the abelian setting.

3.21 Inverting T

Definition 3.16. A filtered spectrum X is called T-invertible if the map 7: %1 X — Xis
an isomorphism. We write FilSp[t~!] for the full subcategory of FilSp on the T-invertible
filtered spectra. Write T—!: FilSp — FilSp for the functor sending X to the colimit

X[t :=colim( X —— 01X —T ... ).

It is easy to check that T acts invertibly on X[t!], so that T-inversion lands in T-invertible
filtered spectra. Moreover, it participates in an adjunction

-1
FilSp —— FilSp[t].

Inverting 7 is a particularly good kind of localisation: it is a smashing localisation. We refer
to [GGN16, Section 3] for an introduction to such localisations. The practical upshot is
that t-invertible objects are closed under limits, colimits and tensor products, and that
T-local objects get an essentially unique structure of a S[t~!]-module structure.

Proposition 3.17. The functor of t-localisation is a smashing localisation, i.e., it is given by
tensoring with the idempotent object S[t~1]. In particular, the inclusion functor FilSp[t~!] C
FilSp preserves colimits and has a further right adjoint.

Proof. The tensor product of filtered spectra preserves colimits. It follows that

X[t7Y = colim( X —— X0IX T4 ...)
>~ colim( S —— S —— ... )@ X
=St l]eX. |

The notion of a t-invertible filtered spectrum is not new: it is the same as a filtered
spectrum whose transition maps are invertible. More precisely, we have the following
identifications.

Proposition 3.18. The symmetric monoidal functor Const: Sp — FilSp restricts to an equival-
ence onto the T-invertible filtered spectra:

Const: Sp — FilSp[t!].
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Under this equivalence, the adjunctions

-1

T X=X
T
FilSp +——— FilSp[t 1] become FilSp «— 0t > gp,

\/’

X+— X®

Paralleling Notation 3.4, we will sometimes use the following notation to distinguish
between the two equivalent co-categories Sp and FilSp[t~!]. In practice however, we may
refer to both functors as “t-inversion”.

Notation 3.19. We write (—)7~! for the composite
FilSp —— FilSp[t~'] —=— Sp.

Remark 3.20. The operation of T-inversion of filtered spectra is compatible with T-inversion
of filtered (graded) abelian groups from Section 3.1. More specifically, if X is a filtered
spectrum, then the natural map provides an isomorphism

(7 X) [T = s (X[T71)),

due to the fact that bigraded homotopy groups preserve filtered colimits (as the filtered
spheres are compact). As a result, this also induces an isomorphism

(7T X) = 22 71, (X771,

Remark 3.21 (Detection and t-divisibility). Let X be a filtered spectrum, and let 8 €
7y X*=1 be nonzero. The statement that 6 is detected (see Definition 2.33) in the spectral
sequence underlying X in filtration s translates to the statement that 6 lifts to a non-7-
divisible element « in 77, s X. Indeed, saying that a is not T-divisible is another way of
saying that a does not lift to 77, 51 X, which is equivalent to its image in E{” not being
zero, which is implied by the definition of detection from Definition 2.33.

Example 3.22. Recall the definition S™* = X" i(s) from Definition 2.19. It is immediate
from the definition of i that we have a natural isomorphism i(—)[t 1] = ConstS. As
T-inversion and Const are exact functors, they preserve suspensions, so we find that

S™ [t~ = £"i(s)[t'] = X" Const S = Const S".

In other words, (§"*)™=! = §". We can think of this as saying that inverting 7 forgets the
filtration. A
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3.2.2 Modding out by T
Notation 3.23. Letk > 1.
o We write Ct* for the cofibre of the map 7F: 8% % — §.
o If X is a filtered spectrum, then we write X /¥ for Ct* ® X.

Concretely, Ct¥ is the filtered spectrum

-— 00— S S—0—— -+,

where the nonzero terms are in filtrations 0, —1, ..., —k + 1. If X is a filtered spectrum,
then X /7* is in filtration s given by the cofibre of X**% — X°.

Unlike in the case of filtered abelian groups, in higher algebra, taking quotients in a
monoidal way is a treacherous matter. In this case, it turns out we can do this in the best
possible way:.

Theorem 3.24 (Lurie). For every k > 0, the filtered spectrum Ct* admits (uniquely up to
contractible choice) the structure of filtered Boo-ring such that its unit map S — Ct* is an
isomorphism in filtrations 0, — ,—k+1.

Proof. See [Lurl5, Proposition 3.2.5], bearing in mind that Lurie writes Rep(Z) for FilSp,
and writes A for Ct. |

Using this ring structure on Ct, we can make precise the way in which tensoring with Ct
recovers the associated graded. We first define a functor

d: grSp — FilSp

given by left Kan extension along the functor Z4s — Z°P, with Z4r denoting the
discrete category with objects Z. Informally, this functor is given by sending a graded
spectrum (X, ), to the filtered spectrum

— PXin — Pxi— P Xe— -,

n>1 n=0 n=>-—1

with maps the natural inclusions. Being defined as the left Kan extension along a sym-
metric monoidal functor, this is naturally a symmetric monoidal functor.

Theorem 3.25 (Lurie). The composite
d . Ct®— .
grSp —— FilSp ———— Modc(FilSp)
is a symmetric monoidal equivalence. Moreover, this equivalence fits into a commutative diagram

FilSp —c grSp

o 2

Mod. (FilSp).
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Proof. See [Lurl5, Proposition 3.2.7], bearing in mind that Lurie writes Rep(Z) for FilSp,
writes Rep(Z%®) for grSp, writes A for Ct, and writes I for d. |

Remark 3.26. The above in particular puts a symmetric monoidal structure on the associ-
ated graded functor Gr: FilSp — grSp, because the functor Ct® —: FilSp — Mod . (FilSp)
is canonically symmetric monoidal. One could have also done this more directly: see
[Hed?20, Section I11.1.3].

Warning 3.27. Being a module over CT is not a property, but additional structure. One can
see this by observing that Ct is not an idempotent, i.e., that Ct ® Ct is not isomorphic to
Ct: we instead have

CteCr=CroL 'Cr.

Indeed, the map T on Ct is nullhomotopic (because Ct is a ring), so the cofibre sequence
defining Ct splits after tensoring with Ct. Alternatively, note that the associated graded
of Ct is concentrated in filtrations 0 and —1, where it is S and S?, respectively. Via the
equivalence of Theorem 3.25, this precisely gives us the above splitting.

Warning 3.28. The notion of modding out by 7 in the spectral setting is decidedly different
from modding out by 7 in the setting of filtered abelian groups. Indeed, this is exactly the
difference between a cofibre and a cokernel: the former also sees the kernel.

3.2.3 Completing at

Definition 3.29. The functor of t-adic completion (or T-completion for short) is Ct-
localisation of FilSp, i.e., inverting those maps that become an isomorphism after tensoring
with Ct.

We write FilSp” for the full subcategory of FilSp on the T-adically complete filtered
spectra. This results in an adjunction

()¢
FilSp .~ FilSp_.

This notion is, in fact, nothing but the notion of completeness previously introduced in
Definition 2.26.

Proposition 3.30.
(1) A filtered spectrum X is T-adically complete if and only if its limit X vanishes.

(2) A map of filtered spectra is a Ct-equivalence if and only if it induces an isomorphism on
associated graded.

(3) For every filtered spectrum X, the natural map X — cofib(X® — X) is the T-completion
of X.
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Proof. By definition, a filtered spectrum X is T-complete if and only if Map(Y, X) is
contractible for all T-invertible Y. The first claim therefore follows immediately from
Proposition 3.18. The second item is immediate from Theorem 3.25. For the final claim,
we have to show that cofib(X*® — X) is T-complete and that the map from X into itis a
Ct-equivalence. The former is clear, and the latter follows from the tetrahedral axiom. W

The operations of inverting and completing at T are related in the following way.

Proposition 3.31. For a filtered spectrum X, there is a natural pullback square of lax symmetric
monoidal functors

X[t — (X)[r71].
In particular, a map of filtered spectra X — Y is an isomorphism if and only if the maps
X[t —Y[t!] and Cr®X-—Ct®Y
are both an isomorphism.
Proof. This is a standard result; see [Man21, Proposition 4.1.1]. [ |

Concretely, this says that a map of filtered spectra is an isomorphism if and only if it is an
isomorphism on the limit and on the associated graded. As such, Proposition 3.31 can be
thought of as the stable analogue of Proposition 2.2.

Finally, we compare T-completeness of filtered spectra and filtered abelian groups.

Warning 3.32. If X is a filtered spectrum, then T-completeness of X need not imply
T-completeness of the Z[t]-module 7., X. Indeed, this is part of the discussion of
convergence. In detail: using Corollary 3.9, we see that part (a) of the definition of
strong convergence in Definition 2.41 is asking 77, X to be T-complete. As explained in
Warning 2.49, the T-completeness of X (i.e., the vanishing of X*°) need not imply this. The
conditional convergence criteria of Boardman from Theorem 2.52 and Remark 2.54 give
the further conditions needed to go from T-completeness to T-completeness of 7, . X.

3.3 Total differentials

Our next topic concerns the differentials in the spectral sequence. Although the previous
concepts involving T are reformulations of ones from Chapter 2, the total differentials to
be introduced in this section did not make an appearance there. However, this is not
because one cannot phrase these without 7, but because we find that T provides for an
easier notational setup to introduce these concepts.

Many authors have used total differentials in both synthetic and motivic spectra; see
[BHS23], [Chu22] and [Isa+24], for example. They naturally arise in the filtered setting
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as well, and they are one of the big benefits of working at the filtered level: they lead to
strengthened versions of the usual Leibniz rule. Further, knowledge of total differentials
allows one to deduce hidden extensions from non-hidden extensions. We explain these
applications at the end of this section.

Notation 3.33. Let X be a filtered spectrum, and let n > 1. Write 95, for the boundary
map in the cofibre sequence

Oy T x xS ylLony

For N > n, write anN for the boundary map in

n oN
Yoy eN-n T o x/eN X/ 2 b x/gN-n,

We call 0 the total differential on X, and call 811\’ the N-truncated total differential on X.

The map 9% captures information about the dy, . .., dy_1-differentials in X. Decreasing
N results in a loss of information, but increasing the lower index n should be thought of
as an increase of information: we will see that, roughly speaking, 9 is only defined on
elements on which the differentials dy, . .., d,—1 vanish.

We will now make these ideas precise. Before we begin, let us point out what these maps
are concretely. As colimits in FilSp are computed levelwise, if we evaluate the cofibre
sequence defining 97" at filtration s, we obtain the cofibre sequence

Xt 5 X 5 Grf X — X5

where the first map is the transition map. Recall from Appendix A that the boundary map
Gr® — X! is precisely the map used to define all the differentials in the underlying
spectral sequence. The other total differentials are variants on this map, and a similar
diagram chase will make precise the intuition for 9}) we gave above.

With this in mind as our intuition, we proceed to the formal proofs.

Proposition 3.34. Let X be a filtered spectrum, let n > k > 1, and let co > N > n. Then we
have commutative diagrams

bt o°
X/t" — vy X/t —1y ybnx
\ l and l lTn—k
sl -n N—n k% 1,—k
X/t X/t —— X2V X,

where the unlabelled maps are the reduction maps. In words: oY is the mod TN =" reduction of 9%,
and T . 9% = 9.



3.3. Total differentials 63

Proof. For readability, we omit the bigraded suspensions in this proof. We start with the
commutative diagram

S

Taking pushouts in the vertical direction once, and repeatedly in the horizontal direction,
we arrive at a commutative diagram

LN X/t x

| | | |

n N
X/N-n o X/7N — 5 X/o" — X/TN-",

The right-most square is the first claimed diagram.

The second diagram comes from the commutative diagram

XU X X/, x

" 7kl ’ ‘ l l.rn —k
aOO

XHXHX/T kX

obtained by taking horizontal pushouts of the left-most square. n

Next, we relate the T-divisibility of the (truncated) total differentials to the vanishing of
differentials in the underlying spectral sequence.

For the case of truncated total differentials, we run into the subtlety that there are two
kinds of T-multiples in 77, . X/7*. Namely, we can either speak of the T-multiple of an
element from X /7%, or of the T-multiple of an element in X /7! regarded as an element
of X/7F. The latter of these is more general. This difference will come up a number of
times, particularly when describing the structure of 7, , X/t later in Section 3.5.1. We
use the following notation to distinguish between these.

Notation 3.35. Let X be a filtered spectrum, and let k > m > 0 be integers.

e For 0 € m,.X/7, we write T" - § for the T"-multiple of 6 in the Z[t]-module
Tl (X /TF).

¢ For 0 € .. X/7T"F, we write () for the image of § under the map

e x0mx jkem o x 1k

Both versions have their advantages and disadvantages. The former of the two is, by
definition, captured by the Z[t]-module 7. .(X/t*), while the map 7" in the latter of the
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two participates in a cofibre sequence

yOmx/m s X/ — X/,
and as a result is closely tied to the truncated total differential d%,. They are, however,
related in the following way:.

Remark 3.36. There is a commutative diagram

z0mx /T X/

=

ZO, —m X/kam

where the left vertical map is the reduction. It follows that for 0 € 7, . X/ ¥, the elements
" .0 and T"(0) (where in the latter, we implicitly reduce § mod t°~™) are the same.
The difference between the notations of Notation 3.35, then, is that there could be more
elements of the form 7" (&) (where & € 7, X/7"™) than elements of the form 7" - 0
(where 6 € 7, , X/TF).

Proposition 3.37. Let X be a filtered spectrum, and let x € E{*. View x as an element of
Ttys X/T. Let r > 0.

(1a) If o5°(x) is T -divisible, then dq(x), ..., d,(x) vanish.
1

(1b) More generally, if k > r and 9% (x) is of the form T'(a) for some a € 7v., X/ 75771, then
di(x),...,d.(x) vanish.

(2a) Suppose that & € 11,1 54,11 X is an element such that T -« = 0°(x). Then the mod T
reduction of w is a representative for d,1(x) in Ef‘l's“ﬂ_

(2b) More generally, ifk > r + 1and a € 7t. . X/ 75" Vis such that T (a) = 0% (x), then the
mod T reduction of w is a representative for d,1(x).

Proof. We begin with the claims regarding d°. These are a rephrasing of the definition of
the differentials in the spectral sequence associated to X. Indeed, evaluating the cofibre
sequence of filtered spectra

r o ad
X T X —— X/ —— 2V TX
at filtration s is exactly the cofibre sequence of spectra

X5t X® Gr'X —— T X5,

Finally, the analogous claims for 9 follow by combining the ones for d3° with Proposi-
tion 3.34. [
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Later, when we have more of an understanding of how 7. . X/7* relates to the spec-
tral sequence, we will be able to rephrase the above result in a convenient way; see
Construction 3.68 and Corollary 3.69.

Warning 3.38. The converse of either item (1a) or (1b) is not true in general. The reason is
that the r-th differential is only well defined up to the images of shorter differentials. As a
result, one cannot in general use d,(x) = 0 to deduce that 07°(x) is T"-divisible if r > 1.
This can be done, of course, if previous differentials vanish in the appropriate range: more
specifically, if bidegree (n — 1, s + r) receives no differentials of length shorter than r.

3.3.1 Applications

The reason for going to the trouble of using total differentials is that they allow for more
sophisticated differential-deduction techniques. Particularly, it allows one to deduce
longer differentials from shorter ones.

A simple example of this is to use linearity of the total differential.

Proposition 3.39 (Linearity of the total differential). Letn > 1,andlet n < N < oo. Let X
be a (left) homotopy-module over a homotopy-associative ring R in FilSp. Then the map 7. . Y
on X is 7, , R-linear. If N < oo, then the map 7. . 0} is also 7t . R/TN-linear.

Proof. This is immediate. |

A more powerful version of this is the following result, due to Burklund [Bur22, Chapter 3].
It is also referred to the synthetic Leibniz rule, but as we will see, the synthetic version
follows directly from the filtered version.

Theorem 3.40 (Filtered Leibniz rule, Burklund). Let R be a homotopy-associative ring in
FilSp. For any n > 1, the map

02" 1T, (R/T") — muiq sin(R/T")
is a derivation. In particular, for any two classes x,y € 7, (R/T"), we have the relation

0y (xy) = 03" (x) -y + (=1)x - 97 ().

Proof. See [CDvIN24, Theorem 2.34]. [ |

Because mod T reduction is a ring map, it follows from this that 97! is also a deriva-
tion. This recovers the ordinary Leibniz rule for d,, or more precisely, for a first-page
representative of d,,.

Finally, we discuss how knowledge of total differentials is, to some extent, the same as
hidden extensions. This was used in, e.g., [BHS23, Proof of Proposition A.20(14)] and
[Mar24, Remark 4.1.3], and is explained in detail in [Isa+24, Method 2.17, Example 2.18,
Proposition 4.5].
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Remark 3.41 (Total differentials and hidden extensions). Fix a filtered homotopy-ring
spectrum X. Let x,y € E;"" be elements, and write # = 9{°(x) and g = 95°(y). In other
words, we have a differential on x hitting (the mod 7 reduction of) «, and likewise from y
to (the mod T reduction of) B, possibly of different lengths. We describe a technique for
deducing (possibly hidden) extensions between a and  from a (non-hidden) extension
between x and y on the E;-page.

Let 0 € .. X be another element, write t € E"* for its mod 7 reduction, and suppose
that we have a multiplicative relation in E"* given by

t-x=y.
Using linearity of d07° over 7, . X, we find that
B=ar(y) =a(t-x) = 37(0-%) = 0-97(x) = -

In words: the extension t - x = y allows us to deduce the extension 0 - « = B, provided
that we know that & and B are the total differentials on x and y, respectively. In fact,
reading the argument backwards, we see that knowing the relation 6 - « = p and the total
differential 9{°(x) = « allows us to deduce the total differential on y.

The resulting extension 6 - « = B corresponds to a hidden extension when the differential
on y is longer than the differential on x. Indeed, set up properly, the length of the
differential corresponds to the 7-divisibility of the total differential. If « = 772’ and
B = v°p/, where o’ and B’ are not T-divisible, and 0 < r < s, then we learn that

0-a =74 up to T'-divisible elements.

Modulo 7, this relation is hidden: the right-hand side reduces to zero modulo 7. Yet, the
relation f - x = y is not a hidden extension, so that the knowledge of total differentials
allows us to turn non-hidden extensions into hidden extensions between the targets of
the differentials.

The only downside of this approach is that it requires « and  to be images of a total
differential, or equivalently, that they have to be T-power torsion (in other words, they
come from classes that are hit by differentials). Such classes define the zero element in
7. X%, making it seem like this method has limited use for deducing extensions between
elements in 77, X~ %. In practice, one can get around this using the following trick. If we
start with non-T-power torsion elements & and  we would like to find a relation between,
we may be able to find another element 7y such that « - v and p - 7y are T-power torsion.
By exactness this must mean they are in the image of a total differential. If the sources of
these total differentials are related by a multiplicative extension on the E;-page, then (up
to dividing by <) we learn about a (possibly hidden) extension between a and .

This method can be modified with other total differentials in the place of 07°. If we work
with oY, then we can learn about hidden extensions of length at most N — 1. These
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truncated total differentials may be easier to obtain, giving it a practical upshot at the cost
of a less powerful outcome. On the other hand, we can also work with 9% (or even 9Y)).
The key difference is that there, we can take multiplicative relations X /7" as input, which
may themselves correspond to hidden extensions of length smaller than n. In this way,
this technique becomes a method to turn hidden extensions into hidden extensions of a
possibly greater length.

Example 3.42. This is a slightly simplified example of a hidden extension in Tmf that is
shown to hold in [CDvN24]. In Tmf, there is a 2-extension in the 110-stem:

2Ky = 17%° (3.43)

In the DSS for Tmf, this is a hidden extension, with filtration jump 12: the element x4 has
filtration 2, the element 7 has filtration 1, and the element x has filtration 4. Working in
the filtered spectrum giving rise to this DSS, we have canonical lifts of these elements to
their respective filtrations, which we will denote by the same name. Although neither x4
nor 72&° is T-power torsion, they become so after multiplying with &>: we even have the
total differentials

0P (2vA7) = TKyK° and 0P (TP A7) = 0 52 6.

The hidden extension 4v = 7213, which is of length 2, now stretches to a length 12
extension:
2- iy 0 = 0 (A7) = 0P (T? A7) = 03 .

From this, the desired extension (3.43) follows. A

3.4 Digression: the T-Bockstein spectral sequence

To prove the Omnibus Theorem, we will use the T-Bockstein spectral sequence of a filtered
spectrum. This is a spectral sequence that compute the bigraded homotopy of a filtered
spectrum X. Its usefulness is due to the fact that the T-Bockstein differentials can be
identified with the differentials in the spectral sequence underlying X.

This is one of the more technical sections in these notes. In this text, we only need this
spectral sequence for the proof of the Omnibus Theorem in the next section, so the reader
who is willing to take the statements of the Omnibus Theorem on faith does not need
to read this section. Although one could have instead phrased that proof with a more
hands-on argument, the T-Bockstein spectral sequence is a useful device in and of itself,
so we thought it worthwhile to give an account of this spectral sequence.

Remark 3.44. The setup of the T-Bockstein spectral sequence is, in some sense, the most
general setup of a (stable) Bockstein spectral sequence. Through the use of deformations
of Section 3.6 (specifically Proposition 3.82), one can recover other Bockstein spectral
sequences; see Example 3.93 for the case of the p-Bockstein spectral sequence of spectra,
for instance.
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Definition 3.45. Let X be a filtered spectrum. The T-Bockstein filtration on X, denoted
BF: X, is the bifiltered spectrum Z°P — FilSp given by

e 302 Tyl T X ——

indexed to be constant from filtration 0 onwards.

Remark 3.46. It is by design that the filtration becomes constant from filtration 0 onwards.
This way, its underlying object is X, and consequently this filtrations helps us understand
74« X. If we had continued the pattern of placing 7’s going all the way to the right, then
the underlying object would be X[t 1], and in fact, we would learn no more than if we
had used the underlying spectral sequence of X directly.

This leads to a spectral sequence in the same way as for singly filtered spectra, except
that the indexing is more involved. To help us index it, we use the philosophy from
Remark 2.28. First of all, this means that the filtration variable s records the location in the
diagram as depicted above. Second, homotopy groups in FilSp are naturally bigraded, so
we would like to understand 7t,, ;, of the colimit. Accordingly, we apply 7, to the above
diagram, and study the resulting behaviour using the long exact sequences involving the
associated graded.

To avoid potential confusion regarding indexing, we discuss this spectral sequence in the
case of a general bifiltered spectrum. In this text, we will only apply this in the case of
(variants of) the T-Bockstein filtration.

Construction 3.47. Let X: Z°? — FilSp be a bifiltered spectrum. We define a trigraded
exact couple
AP =7, 0 (XP) and  E""° = m,,(Gr’ X),

fitting into the following diagram, where each map is annotated by its tridegree.

ANLWS (0,0,-1) ANws
(-1, tk A) 0)
Erws

In this indexing, the differential d, has tridegree (—1,0,7): indeed, a d,-differential is
given by applying a boundary map of degree (—1,0,1) once, lifting against a map of
degree (0,0, —1) a total of r — 1 times, and then projecting down by a map of degree zero.
The resulting spectral sequence is of signature

El""" =1, 0(Gr' X) = 0 X~
The induced strict filtration on 77, ,, X~ * is

Fo 7ty X~ = im (7T X° — 700 X~ F).
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Example 3.48. Let X be a filtered spectrum. We refer to the trigraded spectral sequence
underlying BF: X as the T-Bockstein spectral sequence (7-BSS) of X. Plugging in the
definitions, we see that

Tnw(BFEX) = mw(E% 7 X) = 1y 01s X and  Grf(BE: X) =X0°X/1.

In particular, the first page is of the form

B — Ttn,wrs(X/T) ifs 20, (3.49)
0 else.
The induced strict filtration on 7, . X is
FS 7-Cn,u) X == im(TSZ nn,a;_l,_s X — nn,w X). A

It will be useful to think of an element in filtration s in the 7-BSS as a formal 7°-multiple.

Notation 3.50. We define a formal variable T to have tridegree (0, —1,1). Let X be a
filtered spectrum, and { E;”*" } denote its T-BSS. We put a Z[7]-module structure on
E]"" in such a way that the isomorphism (3.49) becomes an isomorphism trigraded
Z[7]-modules

El"" 2 Z[T] @ . (X/7),

where 71,1, (X/7T) is placed in tridegree (1, w,0).

Remark 3.51. Even though the 7-BSS is a trigraded spectral sequence, one can to a certain
extent depict it as a bigraded one, as follows. Since the df-differential has tridegree
(—1,0,s), by fixing a constant value for w, we get a bigraded spectral sequence trying to
converge to 7, X. An element in filtration s will be a formal 7°-multiple, the only catch
being that the class it is a formal multiple of lives in a spectral sequence for a different
w-value (namely w + s).

The behaviour of the T-Bockstein spectral sequence is the same as any Bockstein spectral
sequence: differentials capture T-power torsion in 77, . X, where a differentials of length
r corresponds to T’-torsion. What is special to the 7-BSS of X is that the differentials
are exactly the differentials in the spectral sequence underlying X. More specifically, a
differential d,(x) = y in the spectral sequence underlying X corresponds to a T-Bockstein
differential

di(x) =7 -y.

The insertion of this T-power means that, instead of killing elements directly, the differen-
tials in the spectral sequence underlying X introduce T-power torsion in 77, » X. Together
with T-linearity of the d}-differentials, this determines all differentials in the T-BSS.

Stating this in a precise way requires some care. For the sake of completeness, we
prove this here in detail. We base the statement of this result on [Pal05] and [BHS23,
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Appendix A]. The full statement about T-power torsion will be given by the Omnibus
Theorem of the next section.

In the statement of the following theorem, all claims about differentials should be inter-
preted as up to boundaries of lower differentials. That is, we allow ourselves to speak of
a differential d,(x) = y where x and y are elements of E; that are d<,_1-cycles, implicitly
considering these elements as defining classes in E,.

Theorem 3.52. Let X be a filtered spectrum. Let {E;”*,d, } denote the spectral sequence
underlying X, and let { E;”**,dT } denote the T-Bockstein spectral sequence of X.

(1) There is a natural isomorphism of trigraded Z[T|-modules
El"" 2 Z[T| @ m«(X/T) = Z[T|  E]”,

where 71,4, (X /T) is placed in tridegree (n,w,0) and T has tridegree (0, —1,1).

(2) The differentials are T-linear and T-divisible: for x € Ef** and y € B!~V there is a
differential

dy(x) =y,
if and only if for any (hence all) m > 0, there is a differential

dr (t"x) = 1"y.

In particular, the Z[T|-module structure on the first page induces a Z[T|-module structure
on later pages.

(3) The target of a df-differential is a T"-multiple: for every x € E;"*, there is an element
y € Bl VYT such that
dy(x) =7y,

where the multiplication denotes the Z|[T)-module structure on E;"™* from (2).

(4) Ifx € B andy € B} ™7, then there is a differential

dr(x) =y
if and only if there is a differential
di(x)=7"-y.

(5) Suppose that x € E{""* detects an element 6 € 71, ,, X. Then 6 is T5-divisible. Moreover,
for every m > 0, the class T" - x detects T" - 0.

(6) The t-Bockstein spectral sequence for X converges conditionally to 7. . X if and only if
the spectral sequence underlying X converges conditionally to 7, X~*°. If this is the case,
then the T-Bockstein spectral sequence converges strongly if and only if REcs’ (the derived
oco-term for the spectral sequence underlying X) vanishes for all n, s.
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Here, items (2) and (4) should be read inductively, in the following way:.

¢ Item (1) provides a Z[T|-module structure on the first page, so that the statement of
T-linearity of the df-differential is well defined. As the second page is the homology
of the first page, this endows the second page with a natural Z[T]-module structure,
so that we can talk about T-linearity of d}-differentials, and so forth.

¢ Using item (1), the comparison of d; with d] makes sense. Once this is established,
it follows that the isomorphism from item (1) induces an isomorphism

E0s o B w+s
2 2

for all s > 1. Since the d}-differential only hits filtrations s > 2, we can use these
isomorphisms to make sense of the comparison between d;, and d3, and so forth.

Proof. Item (1) is true by definition of T in Notation 3.50.

Item (2) is clear after unwrapping definitions. Let us do this in the case m = 1, which is
sufficient to prove the entire statement. If x is an element of tridegree (1, w, s), this means
that x is an element of

Tt (Gr® BF: X) = 71, 015 X/ T.

The meaning of a differential d7 (x) = y is as follows: there is an element & in 77, ,, BFS"" X =
Tty w+s+r X such that

r—1 __ oo : s5+1 _
T a=07(x) in 7, B X = 7y isi1 X,

and such that the mod 7 reduction of a is equal to y (up to boundaries of shorter differen-
tials). The element T - x is given by considering x as an element in

TTn,w—1 (Grs+1 BF: X) = T, w—14s+1 X/ T = T X/ 7T,

and the differential on it is calculated in exactly the same way. This proves the ‘only
if” statement. To also deduce the “if” statement, it suffices to observe that by induction
on r, the shorter differentials entering tridegree (1, w,s + r) are T-power multiples of
differentials originating from filtration 0. As a result, both the differential 47 (x) = y and
df (Tx) = Ty have the same boundaries as their indeterminacy, so the claim follows.

Item (3) will follow from item (2), combined with the following claim: for every r, n, w,
and s, multiplication by T induces a surjection

=. h,w,s n,w—1,s+1
T: B — E; .

This claim, in turn, we prove by induction on r. For r = 1 it is clear from item (1). Assume
that for some r > 1, multiplication by T induces a surjection E;"*"* — B O-Lst Write
(kerd,)™"* for the kernel of the d,-differential out of E;"**, and write (im d,)"%* for the
image of d, into E;"*”°. Then we have

ErwSs — (ker dr)n,w,s d En,w—l,s+1 _ (ker dr)”'w*LsJFl
r+1 = W an r+1 - (im dr)”,w—l,S—O—l .
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The T-divisibility of the differentials from (2) implies that multiplication by T restricts to a
surjection (kerd, )"%* — (kerd,)™®~1**1 which implies the desired statement.

To prove item (4), it suffices to prove this for one fixed value of w = wy at a time. The
exact couple computing the differentials going out of filtration w is also computed by the
exact couple associated with the truncated version of X:

2 1
o XZUO+ - Xw0+ - XwO le] cee,

where X™ is placed in filtration wy. Let us denote this filtered spectrum by Y. (In a
picture, the spectral sequence underlying Y is obtained from the one associated to X by
removing the elements in filtration strictly below wy.) Next, we observe that by levelwise
evaluating BF; X: Z° — FilSp at degree wy, we obtain =%~ Y. As a result, the functor
of levelwise evaluating at degree wy induces an isomorphism of exact couples

Al wO’S(BFT X) i A w0+S(Y) E™ wO’S(BFT X) i} E™ w0+S(Y)

where s > 0. This identifies the d}-differentials with the d,-differentials going out of in
filtration wy.

For item (5), recall from Definition 2.33 that x detecting 6 means that there is a lift
X € Ty BF, X = 7y 445 X of x that maps to 6 under 71, BF; X — 71,4 BF? X. This
transition map is given by multiplication by 7°, so this is saying that ° -« = 6. This
proves the first clause. We prove the second clause for m = 1, from which the general
case follows by iterating. Using the Ee-structure on Ct from Theorem 3.24, it follows that
multiplication by 7 is zero on 7, . (X/7), so that T - 6 is detected in filtration at least s + 1.
Next, the element a, considered as an element of 77, ;,—1 BFS%+1 X = 7Ty, wts X, is a lift of
T-x € Ef* 11 Clearly, the element a in 77, 1 BFS™! X maps to 5! - a = 7 - 6 under
T 7, wis X — w1 X, soindeed T - x detects T - .

Finally, we address the claims regarding convergence. Conditional convergence of the
T-Bockstein spectral sequence is the claim that the limit of BF; X vanishes. By Proposi-
tion 3.18, this limit is isomorphic the constant spectrum on X*, proving the claim about
conditional convergence. Suppose now that both spectral sequences converge condition-
ally. By the trigraded analoguel?! of Theorem 2.52, the T-Bockstein spectral sequence
converges strongly if and only if REs"”* vanishes for all 1, w, s. Using the isomorphism
from (4), we find that (for s > 0)

REL" = lim' Z}"** = lim' Z}»*** = RELV . u
r r

[Z1As explained in [Hed20, Remark 1.2.4], one needs certain requirements on an abelian category A to ensure
that Boardman'’s arguments apply to spectral sequences valued in .A. Here, we are working with spectral
sequences valued in trigraded abelian groups, where these conditions are certainly met, and Boardman’s
arguments go through without any change (merely tagging on an additional grading).
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Remark 3.53. A different way of stating (part of) items (3) and (4) above is to say that the
isomorphism of item (1) induces isomorphisms (for s > 0)

n,w,s ~ 7n,w—+s n,w,s ~ ph,w+s n,w,s ~ 71, w+s n,w—+s
Z” - Z” BV - Bmin(r,s) Er+1 - ZV /Bmin(r,s)'

In particular, we have isomorphisms

n,w,s ~v 71, w+s n,w,s ~v pn, w—+s n,w,s ~v zn, w+s n,w-+s
750 =27 By = B Ey s = Z3 YT /Bl YT,

The appearance of the s-boundaries instead of the co-boundaries in the last expression is
the reason that a d,-differential in the spectral sequence underlying X leads to t"-power
torsion in 71, 4 X.

Remark 3.54 (Convergence of the 7-BSS). Notably, in part (6), we do not need to assume
strong convergence of the spectral sequence underlying X to ensure strong convergence
of the 7-BSS for X. This distinction is relevant in the case where X is neither left nor
right concentrated, in which case additionally Boardman’s whole-plane obstruction W
from Remark 2.54 needs to vanish to ensure strong convergence of the spectral sequence
underlying X. The reason this does not appear for the 7-BSS is explained by Warning 2.49.
Indeed, the group W is the obstruction to a limit commuting with a colimit, but the
abutment of the 7-BSS is 71, X, where we have not yet taken the colimit over w (which
would result in 7t, X~*°). Of course, to be able to study 7, X~ * using 7, . X, one would
then need W to vanish.

Remark 3.55 (Second-page indexing). As per usual up till this point, we have used first-
page indexing for the T-Bockstein spectral sequence. Even in situations where one indexes
filtered spectra using second-page indexing, there is something to be said for using first-
page indexing for the 7-BSS: only in this indexing does filtration correspond to T-power
divisibility. In that case, a d}-differential would correspond to a d,;-differential. (See
Variant 4.39 for an example.) If desired however, second-page indexing for the 7-BSS can

be achieved via
Tnw,s . n,w,s+w
EV0S i Elste,

In this indexing, T has tridegree (0, —1,0), and the non-7-divisible groups are located in
tridegrees of the form (n, w, w).

Warning 3.56. The T-divisions appearing in items (2) and (3) are not necessarily unique,
due to the T-torsion caused by shorter differentials.

3.4.1 The truncated 7-Bockstein spectral sequence

There is a truncated version of the T-Bockstein spectral sequence, which instead computes
the bigraded homotopy groups of X/7*. One could, of course, apply the 7-BSS directly
to X /7, but it is more efficient to use the following modification of the T-BSS.
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Definition 3.57. Let X be a filtered spectrum and let k > 1. The k-truncated t-Bockstein
filtration on X is the bifiltered spectrum try BF;: X given in nonnegative filtrations by

. 0 ZO’ —k+1 X/T T ZO’ —k+2 X/T2 T . T X/Tk

and indexed to be constant from filtration 0 onwards. The resulting spectral sequence we
call the k-truncated T-Bockstein spectral sequence for X.

Remark 3.58. Upon evaluation at a fixed filtration, we obtain the filtered spectrum de-
scribed by [Ant24, Construction 3.17].

Rather than having to re-prove the analogous version of Theorem 3.52 from the ground
up, we can instead deduce this from Theorem 3.52 by means of the following map.

Construction 3.59. Let X be a filtered spectrum. Then for every k > 1, we have a
morphism of bifiltered spectra BF; X — try BF; X of the form

. T ZO'_k X T ZO,—k—i—l X T ZO’_k+2 X T . T X
0 ZO,—k-‘rl X/T T ZO,—k-‘rZ X/Tz T . T X/Tk

constructed by letting each nontrivial square be a pushout. Formally, it is left Kan
extended from the subdiagram

T 0l T y0kx T T X
0 0

Likewise, for m > k > 1, we have a morphism tr,, BF; X — tr; BF; X, and these fit into a
tower
BF; X —--- — tr; BF; X — tr;,_1BF; X — -+ — tr{ BF; X.

On colimits (equivalently, on filtration 0), this tower is the T-adic tower of X:

X— . —X/t"— X/ — . — X/1

The only subtlety with the truncated version is the distinction between the two kinds of
T-multiples, as discussed in Notation 3.35.

Theorem 3.60. Let X be a filtered spectrum and let k > 1. Let { E;"", d, } denote the spectral
sequence underlying X, and let { E;"”**,d} } denote the k-truncated t-Bockstein spectral sequence
of X.
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(1) The map on spectral sequences induced by BF: X — try BE; X from Construction 3.59 is,
on first pages, given by the quotient

Z[T] @ M o (X/T) — Z[T] /T @ 7. (X /7).

For m < k, the map on spectral sequences induced by try BE: X — tr,, BF: X from
Construction 3.59 is, on first pages, given by the quotient

Z[7]/ T @ . (X /T) —> Z[T]/T" @ 7. (X /7).

(2) The differentials are T-linear: for x € B} and y € B} V™1 if there is a differential
dr(x) =y,
then for all m > 0, there is a differential
dr (t"x) = 1"y.

In particular, the Z[T|-module structure on the first page induces a Z[T|-module structure
on later pages.

(3) The target of a df-differential is a T"-multiple: for every x € E;"*, there is an element
y € Bl VU0 such that
THx) =7y,
where the multiplication denotes the Z[T|-module structure on E;™ from (2).

(4) Letr <k —1.Ifx € BV and y € B} V™", then there is a differential

dr(x) =y
if and only if there is a differential

r

dr(x) =7"-y.
(5) Suppose that x € E}"™” detects an element 0 € 7,4 X/T¥. Then 0 is in the image of the
map
o 2O X/ — Xtk

i.e., it is of the form T°(&) for some & € 70y 15 X/ T 5.

Moreover, for every m such that s +m < k — 1, the class T" - x detects T - 0. For every m
such that s +m > k, we instead have T - 6 = 0.

(6) The k-truncated T-Bockstein spectral sequence converges strongly to 7, » X/ T~.

Take particular note that in item (2), the truncated differentials are no longer T-divisible
in general, and that item (4) only applies to differentials of length » < k — 1 (longer
d;-differentials vanish for degree reasons).
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Proof. The definition of the map BF; X — try BF; X from Construction 3.59 as a left Kan
extension shows that in filtrations 0 < s < k — 1, the map induces an isomorphism on
associated graded. This proves the first part of item (1), and the second is analogous.

Items (2) to (4) follow immediately from items (2) to (4) of Theorem 3.52, using the map
from item (1). For item (6), it is enough to note that try BF; X vanishes in filtrations s > k,
so that (the trigraded analogue of) Proposition 2.53 implies the strong convergence.

It remains to prove item (5). The statement that x detects § means that there is a lift
X E Ty wts X/ TK=5 of x that maps to 6 under the transition map

tr BEE X =20 S X /75 — X/7F =t BRY X,
in other words, that 7°(a) = 6. If s+ m < k — 1, then
7o, w—m (Gr° " try BE: X) = 710 X/ 7T,

and T" - x is given by the element x considered as an element of this group via this
identification. Write B for the mod 75" reduction of «. Then B is a lift of T" - x
to 7 wm (trx BEET" X) = 70, 0y X/ gh—s—m Evidently, the image of this element in
tr, BFY X is given by

t(B) =T (T"(B)) =T (" ) =" T (a) =T - 0.

Lastly, if instead s + m > k, then this means m > k — s. Since " - t°(a) = 7°(7™ - &) and &
lives in 77, X /7575, it follows that T - & = 0 (using the ring structure on Ct*~*), proving
the final claim. [ |

Warning 3.61. Unlike in the integral case, if an element in the truncated 7-BSS is detected
in filtration s, this does not imply that it is a T5-multiple in 7. X/7*. Instead, in general
this only implies that it is of the form 7°(8) for some 6 in 77, . X /7% (See Notation 3.35
for the distinction between these two.)

3.5 The Omnibus Theorem

We can summarise Section 3.2 as follows: if X is a filtered spectrum, then its underlying
spectral sequence is of the form

E’il,s - 7‘[;«1[5(CT®X) — 7Tn(XTZ1).

In Appendix A, we argued that the bigraded homotopy groups 7.« X as a Z[t]-module
should capture the differentials in this spectral sequence. The Omnibus Theorem makes this
precise, by describing the structure of 7, . X in terms of the underlying spectral sequence
of X. We prove it here in the context of filtered spectra, which should be regarded as the
most general (stable) setting for it: later in Section 3.6, we will show how it extends to
any monoidal deformation. In Chapter 4, we will see how this recovers and extends the
synthetic Omnibus Theorem of Burklund-Hahn-Senger, and compare our proof to theirs;
see Section 4.5 in particular.
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Theorem 3.62 (Omnibus). Let X be a complete filtered spectrum, and assume that in the
spectral sequence underlying X, we have REs" = 0 (for instance, this happens if the spectral
sequence converges strongly). Let x € E{* = 71, s(X/T) be a nonzero class. Then the following
are equivalent.

(la) The element x is a permanent cycle.
(1b) The element x € 71,,,5(X/T) lifts to an element of 77,5 X.

For any such lift « to 11, s X, the following are true.

r—1

(2a) If x survives to page r, then T"~* - w is nonzero.

(2b) If x survives to page oo, then « maps to a nonzero element in 77, X7~ = 71, X~*, and this
element is detected by x.

Moreover, if x lifts to X, then there exists a lift a with either one of the following additional
properties.

(3a) If x is the target of a d,-differential, then T" -« = 0.
(3b) If6 € T, X7V is detected by x, then « is sent to 6 under 17, s X — T, X™=1,
Finally, we have the following generation statement.

(4) Let { a; } be a collection of elements of 71, . X such that their mod T reductions generate the
permanent cycles in stem n. Then the T-adic completion of the Z|t|-submodule of 7, « X
generated by the { a; } is equal to 77, . X.

Proof. By Theorem 3.52 (6), the hypotheses on X are equivalent to strong convergence of
the T-Bockstein spectral sequence for X.

We begin with (1). The map BF; X — tr; BF;: X from Construction 3.59 is, on underlying
objects, equal to the reduction map X — X/7. Meanwhile the induced map on the first
page of the resulting spectral sequences is given by quotienting by T:

Z[T] @ . (X/T) — 1. (X/7T),

so in particular it is an isomorphism in filtration 0. By strong convergence, every per-
manent cycle in the 7-BSS lifts to 77, . X. Accordingly, it follows that x € 71, s(X/T) lifts
to 71,5 X if and only if the element x considered in tridegree (1,s,0) of the T-BSS is a
permanent cycle. The equivalence of (1a) and (1b) therefore follows from the identification
of the differentials in the T-BSS from Theorem 3.52 (4).

Next, we check (2a). Suppose that & € 7, X is a lift of x. Then since BF; X is constant
from filtration 0 and onwards, this means that the class x detects a. By Theorem 3.52 (5),
the element 7'~ ! - x detects 77! - a. To show that 7/~! - a is nonzero, by (the trigraded
analogue of) Remark 2.43 we need to show that T'~! - x survives to page co. Again using
Theorem 3.52 (4), we see that T"~! - x survives to page r if and only if x in the spectral
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sequence underlying X survives to page . If this happens, then for degree reasons '~ - x
also survives to page .

Properties (2b) and (3b) are a restatement of the definition of detection from Definition 2.33,
with (2b) specifically following from Remark 2.43.

We prove (3a) by induction on r. Suppose that x is the target of a d,-differential, say
dr(y) = xfory € myy1,5—r(X/7). This implies that d} (y) = T" - x. Unrolling the definition
of the d}-differential, this means the following. There exists an element « € 77, s X such
that

e = o7 (]/) in 7, 1,5 11X,

and such that the mod 7 reduction of « agrees with x up to the images of differentials of
length shorter than r.
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By induction, we may assume that the images of shorter differentials have " ~L_torsion
lifts, so that without loss of generality, we may assume « is a lift of x. By exactness, we
have 7-99°(y) = 0. But then 7" - &« = 7 - 9°(y) = 0, so that « is a lift satisfying (3a).

For the final claim, let M denote the Z[7]-submodule of 7, . X generated by the ;. By
strong convergence of the 7-BSS, the Z[t]-module 7, . X is T-complete; see Warning 3.32.
It follows that M2 is naturally a submodule of 7, . X. To show that this inclusion is
an equality, it suffices to show that it becomes surjective after quotienting by 7, as both
modules are T-complete. After quotienting by 7, the inclusion becomes

M/T — (1, X) /T = FO 10 X,

where the last identification is Theorem 3.52 (5). By the identifications of the differentials
in the 7-BSS of Theorem 3.52 (4), the assumption on the a; translates to this map being a
surjection. This finishes the proof. n

Warning 3.63. Suppose that x € E{* is the target of a d,-differential, and suppose that
a € 7y, X is a lift of x. Then item (3a) does not necessarily imply that « is T"-torsion (in
fact, in general & need not even be T-power torsion): the theorem only guarantees that
there exists some lift of x that is 7"-torsion.

We can draw a number of simpler conclusions from this result.

Corollary 3.64. Let X be a filtered spectrum satisfying the conditions of Theorem 3.62, and let n
be an integer. Then the Z[t|-module 71, « X is T-power torsion free if and only if the n-stem in the
spectral sequence underlying X does not receive any nonzero differentials.
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Proof. The lack of incoming differentials implies that every permanent cycle survives to
page oo, so one direction follows from item (2a). Conversely, if the n-stem does receive a
nonzero differential, then by item (3a) there exists a T-power torsion elementin 77, . X. W

Corollary 3.65. Let X be a filtered spectrum satisfying the conditions of Theorem 3.62, and let
n,s be integers. If 1, 514 X /T vanishes for all d > 0, then 7, s X vanishes also.

Proof. This follows directly from item (4). |

Remark 3.66. By inspecting the proof of Theorem 3.62, we see that the convergence
conditions on X are only needed for items (1) and (4). Without these assumptions, item (2)
still holds for any lift, but such a lift is no longer guaranteed to exist. In item (3) meanwhile,
the assumptions on x in both (3a) and (3b) imply that a lift exists (see Definition 2.33).

3.5.1 The truncated Omnibus Theorem

There is also a version of the Omnibus Theorem that describes the structure of 7. .(X /t*)
in terms of the spectral sequence underlying X. In this case, we no longer need any
convergence conditions, but the generation statement is more involved to state. Let us
begin therefore with the other parts of the Omnibus Theorem.

Theorem 3.67 (Truncated Omnibus, part 1). Let X be a filtered spectrum, and let k > 1. Let
x € B = m,5(X/7) be a class. Then the following are equivalent.

(la) The differentials d1(x), ...,dx_1(x) vanish.
(1b) The element x € 11,5(X /) lifts to an element of 7t,s(X /).
For any such lift o to 71,5(X /"), the following are true.
(2a) If x survives to page r for r < k, then T"~1 - a is nonzero.
(2b) The image of & under 3™ : 7, s(X/7%) — 751,54, (X/T) is a representative for dy(x).
Moreover, if x lifts to X / T, then there exists a lift a with the following additional property.
(3) If x is the target of a d,-differential for r < k, then T" -« = 0.

Proof. The k-truncated T-Bockstein spectral sequence for X converges strongly to 7z . X/t

by Theorem 3.60 (6).

The morphism try BF; X — tr; BF; X from Construction 3.59 is, on underlying objects,
the reduction map X /75 — X /7. On first pages of the underlying spectral sequences on
the other hand, the map takes the form of quotienting 7:

In the same way as in the proof of Theorem 3.62, the equivalence between (1a) and
(1b) follows by strong convergence and from the identification of the differentials in the
truncated 7-BSS arising from Theorem 3.60 (1).
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Next, we prove item (2a). Let o € 77,5 X/ ¥ be a lift of x. By Theorem 3.60 (5), the element
7'~1. & is detected by T'~! - x. The assumption that x survives to page r implies that
7'~1. x is a permanent cycle that survives to page r, and for degree reasons it then also

survives to page co. Using Remark 2.43, it follows that 7" ~! - a is nonzero.

Next, we prove item (2b). Let & € 7,5 X/7* be a lift of x. As a consequence of The-
orem 3.60 (1), it is enough to show that a;“ (a) is a representative for df (x) in the non-
truncated 7-BSS, where we regard x in tridegree (,s,0). Recall how the dy-differential
on x in the non-truncated 7-BSS is computed: we apply the boundary map 97°(x), choose
a TF1-division of this element, and reduce this mod 7.
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We have tF1 - 9% (a) = 9°(x). In other words, 9°(«) is a valid choice of TF~!-division
of 97°(a), so that its projection to 77, s X/ 7 is a representative for df (x). But the mod T
reduction of d}” is Gfrl, proving item (2b).

Next, we prove item (3). Suppose that x is the target of a d,-differential for r < k. We
consider the element T~ ! - x in tridegree (n, s —r+1, r — 1) of the k-truncated T-Bockstein
spectral sequence. Then the d,-differential hitting x translates to a d;-differential

di(y) =T'x.

Unrolling what this means, we learn the following. There exists an element 8 € 71, 5(X/75")
such that 7~1(B) = 9%(y), and such that  reduces to x modulo T up to the images of
shorter differentials.
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Like in the proof of Theorem 3.62, by induction we may assume without loss of generality
that B reduces to x. By exactness, the element oX(y) satisfies T(9%(y)) = 0, so any
choice of B satisfies 7"(B) = 0. As a result, it suffices to show that there is a choice of
B e mys X/ K=" that lifts to an element in Tty X/ 7%, Indeed, if such a lift a exists, then
by Remark 3.36, we have 7" - « = 7"(B) = 0, which would mean that « is the lift proving
item (3).

To produce such an «, we first show that y € 7,1, X/7 lifts to X/7". This follows
from (1) because y is a d<,_1-cycle. Choose a lift . It then follows that 9%(¥) is a valid
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choice for B as above. To show that this f lifts to X /¥, we need to show that ¥ () = 0.
Note that 9f o 0¥ can be written as (omitting shifts for readability)

e e
X/t e x s X/t X X/t

The middle two maps are part of a cofibre sequence, so in particular their composition
is zero. This means that indeed of__(B) = 0, showing that g lifts to the desired , thus
proving item (3). u

Construction 3.68. Let X be a filtered spectrum, and let 7, s be integers.

(1) By Theorem 3.62 (1), the reduction map 7, X — 77,5 X/T = E{” has image given
by the subgroup Za;® of permanent cycles. Postcomposing with the quotients, we in
particular obtain, for every 1 < r < 0o, a map

s X — EJ7°

which is surjective in the case r = co.

(2) Let r > 1. By Theorem 3.67 (1), the reduction map 7, s X/7" — 1, X/T = E}”*
has image given by the subgroup Z'"*, of (r — 1)-cycles. Postcomposing with the
quotient, we in particular obtain a surjective map

TTys X/ T —» EJ°.
These maps are compatible with each other in the obvious way.

Using these maps, we can now reformulate Proposition 3.37.

Corollary 3.69. Let X be a filtered spectrum, let r > 1, and let n and s be integers. Then we
have a commutative diagram

aOO
TTn,s X/t — 7Tn—1,s+rX

! |

d —
Ef’s r E? l,s—&-r.
More generally, for R > r, we have a commutative diagram

aR
s X/ T ——— Ty 1 s0r X/TRT

! !

d _ _
n,s r n—1,s+r n—1,s+r
S N/, /B

where m is the minimum of r —1and R —r — 1.
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Proof. This follows directly from Proposition 3.37. [ ]

Next, we turn to the question of finding generators for 77, . X/7*. In the non-truncated
version (Theorem 3.62 (4)), we could start with lifts of permanent cycles, and take the
(t-complete) Z[7]-module that they generate to reconstruct all of 77, . X. In the truncated
case, taking T-multiples is a more subtle notion. In order to generate 7. . X /7¥, we need
to take the T-multiples of elements from all lower truncations X/ 7! for i < k into account.
Unfortunately, stating this precisely makes the indexing get a little out of hand.

For applications, we also need a relative version describing the kernel of X /7% — X /1.
To compensate for the more intricate phrasing of this result, we give a simplified, more
coarse description in Corollary 3.72 below.

Theorem 3.70 (Truncated Omnibus, part 2). Let X be a filtered spectrum, let n,s € Z, and
letr > 1.

(1) Let k > 1 be fixed. Suppose that for every 1 < i < k, we have a collection of elements
(B} C 7 sini X/ T
whose mod T reductions generate the abelian group
Z SR s, (3.71)
(Note that by Theorem 3.67 (1), such a collection exists for every i.) Write

oc;. = Tk’i(ﬁ§) € TTne X/ 75

Then { oc§ }i,j is a set of generators for the abelian group 1,5 X/ T~.

(2) Let 1 < m < k be fixed. Suppose that for every 1 < i < k — m, we have a collection of
elements

{B}; C M, sski X/ T

whose mod T reductions generate the abelian group (3.71). Write tx;. = Tk*"(,B;'-). Then
{ oc;- }ij is a set of generators for the abelian group

ker(rfnrs X/Tk —> 7‘[71[5 X/Tm).

Proof. The k-truncated Bockstein spectral sequence converges strongly to 77, . X/t by
Theorem 3.60 (6). The first result therefore follows from Theorem 3.60 (4); see also Re-
mark 3.53. The second follows analogously by considering the natural map from the
k-truncated 7-BSS to the m-truncated 7-BSS for X induced by the map from Construc-
tion 3.59. n

Sometimes, the following simplified criterion is sufficient.
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Corollary 3.72. Let X be a filtered spectrum, let n,s € Z, and letk > m > 1.
(1) If 1y 544 X/ T vanishes for 0 < d < k — 1, then 71, X /7% vanishes also.

(2) If 7y 54+a X/ T vanishes for m < d < k — 1, then the reduction map 7,5 X/ T —
Ttn,s X/ T™ is injective.

Proof. In the notation of Theorem 3.70, we have E{* = 7, s X/, and Z;* is a subgroup
of this. It follows that the relevant groups in (3.71) vanish, so the claims follow. n

3.6 Deformations

So far, we have seen that the co-category FilSp is the natural home for (stable) spectral
sequences. For specific purposes however, this category might be a bit unwieldy, and
it might be helpful to find a modification of FilSp that is more suited to the problem
at hand. The main example of such a modification in these notes is that of synthetic
spectra. However, much of the setup of synthetic spectra holds much more generally,
and leads one to a broad theory of ‘modifications” of FilSp. These have become known
as deformations. Readers only interested in synthetic spectra may move on to the next
chapter, referring back to this section as needed.

This section is concerned with the general properties of deformations. Of particular
interest is the case where this deformation structure arises from a (symmetric) monoidal
left adjoint out of FilSp; we call these (symmetric) monoidal deformations, which are the
subject of Section 3.6.1. For monoidal deformations, we can prove much more: we prove
all that we need in order to import all results about filtered spectra into a monoidal de-
formation; see Theorem 3.88. In particular, the Omnibus Theorem holds in any monoidal
deformation, where the underlying spectral sequence is replaced by what we call the
signature spectral sequence. We will make particular use of this in the case of synthetic
spectra in the next chapter.

Later, in Chapter 5, we will continue our study of deformations and discuss cellularity,
filtered models, and evenness. For now, our goals are more modest, and our main aim is to
show how to deduce results in a deformation from results in filtered spectra.

Much of the material in this section is based on the treatment of deformations given by
Barkan [Bar23, Section 2] and Burklund—-Hahn-Senger [BHS22, Appendices A—C]. While
these sources also discuss constructing new deformations out of old ones, we will focus
on studying phenomena within a fixed deformation.

Definition 3.73 ([Bar23], Definition 2.2). A (1-parameter, stable) deformation is a left
module over FilSp in Prgt.

A module over FilSp in Pr; is also called an FilSp-linear co-category. We refer to [NPR24,
Section 3] for further background on D-linear co-categories where D is a presentably
symmetric monoidal co-category.
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A deformation C is in particular left tensored over FilSp. As a result, we will use the
same notation of bigraded shifts " on C to mean tensoring with the filtered spectrum
S™s. Likewise, if X € C, we will generally denote by 7: £%71X — X the map given by
tensoring the map 7: S%~! — S of filtered spectra with X. Moreover, if A is a filtered ring
spectrum, then we can speak of modules over A in C. Two cases of A deserve a special
name.

Notation 3.74. Let C be a deformation. The generic fibre of C is defined by
Clt 7] := Modg;1(C),
and we refer to the functor
C—C[tY, X— X[t =St eX
as the T-inversion functor. Further, the special fibre of C is defined by
Modc-(C),

and for X € C, we write
X/T=Ct®X.

Finally, we write C2 for the full subcategory of C on the Ct-local objects, which we call
T-complete. This results in a localisation
(-)z

C ———C).

Remark 3.75. Using that the tensoring over FilSp preserves colimits in each variable, we
find that
X[t7!] = colim( X —— X01X T ...)

and
X/1 = cofib(t: Z¥ 1 X — X).

Moreover, since S[t~!] is an idempotent in FilSp, it follows that C — C[t~!] is a smashing
localisation, and the forgetful functor C[t~!] — C is fully faithful with essential image
consisting of those X on which 7 is an isomorphism. In most examples, the forgetful
functor Modc.(C) — C is not fully faithful.

In a moment, we will see a way to obtain examples of deformations. For now, let us
mention the following.

Example 3.76. The universal example of a deformation is that of FilSp itself. In this
case, Proposition 3.18 identifies the generic fibre with Sp, and Theorem 3.25 identifies the
special fibre with grSp. A



3.6. Deformations 85

Example 3.77 ((BHS22], Appendix C.1). Let R be a filtered E;-ring. Then the co-category
Modg (FilSp) is naturally a deformation. Its generic and special fibres are equivalent to,
respectively,

Modg1(Sp) and  Modg,(grSp).

If R is a filtered Ew-ring, then these equivalences are naturally symmetric monoidal.
In fact, in this case the deformation Modg (FilSp) is a symmetric monoidal deformation, a
concept to be introduced in Section 3.6.1 below. A

Remark 3.78. The use of the terms deformation, special fibre and generic fibre is inspired by
algebraic geometry. We think of T as the deformation parameter, and the ‘deformation’ is
one of the special fibre to the generic fibre. Geometrically, FilSp plays the role of Al/G,,.
One can in fact make this comparison precise; see [Mou21].

The analogous statement to Proposition 3.31 holds in any deformation. In this sense, the
parameter T governs the large-scale structure of a deformation.

Proposition 3.79. Let C be a deformation. For X € C, there is a natural pullback square

X ——— 5 X
=
X[t —— (X[
In particular, a map X — Y in C is an isomorphism if and only if the maps
X[t —Y[t] and Cr®X-—Ct®Y

are both an isomorphism.

Proof. This follows by tensoring the pullback square from Proposition 3.31 for the unit in
FilSp with the object X € C. As tensoring preserves colimits in each variable, and we are
in the stable setting, the resulting square is again a pullback square. n

Remark 3.80. Because the inclusion C[t~!] C C admits both a left and a right adjoint, it
follows from [HA, Proposition A.8.20] that this equips C with the structure of a stable

recollement
-1
T

N N

(7)'( C,{_\

[T « C
N

and the pullback square of Proposition 3.79 is the one corresponding to this recollement.

C

A deformation is naturally enriched in filtered spectra; more loosely speaking, it is
enriched in spectral sequences.
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Construction 3.81. Let C be a deformation. Let X,Y € C. Recall the functor i: Z — FilSp
from Definition 2.17. Define the filtered mapping spectrum filmap,(X,Y) from X to Y as
the filtered spectrum

map,(i(—)® X, Y): Z°° — Sp,
where map, (—, —) denotes the mapping spectrum of C. This is naturally functorial in
X and Y, leading to a functor filmap: C°? x C — FilSp. Concretely, the filmap, (X, Y)is
given by

oo — mapp (21 X, Y) — map,(X,Y) — map (2> ' X, Y) — -+

with transition maps induced by .

3.6.1 Monoidal deformations

One way to obtain the structure of a deformation on C is to give it the additional structure
of an algebra over FilSp. The universal property of FilSp provides a way to construct this.
In the following, we are careful with the distinction between monoidal and symmetric
monoidal functors, because of the existence of important examples where these functors
are not symmetric. Nevertheless, in the case of synthetic spectra, these issues do not arise,
so the distinction will not appear much in the later text.

Recall the symmetric monoidal functor i: Z — FilSp from Definition 2.17 which, by
Remark 3.14, is of the form

. T go—1 T S T g0/1 T

The universal property of FilSp says that it is the universal presentable stable co-category
on a diagram of this form. In more loose terms, this says it is the universal category on
the endomorphism 7 of the unit.

Proposition 3.82 (Universal property of filtered spectra).
(1) Let C be a presentable stable co-category. Then there is an equivalence
Fun(Z,C) ~ LFun(FilSp, C)
such that, if f: Z — C corresponds to F: FilSp — C, then we have a natural isomorphism

Foi = f.

(2) Let C be a presentably (symmetric) monoidal stable co-category. Then there is an equivalence
Fun®(Z,C) ~ LFun®(FilSp, C),

where Fun® denotes the co-category of (symmetric) monoidal functors. Moreover, when
forgetting the (symmetric) monoidal structure on the functors, this equivalence coincides
with the equivalence from item (1), and the natural isomorphism F oi = f is naturally
(symmetric) monoidal.
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Proof. Note that we have a symmetric monoidal equivalence FilSp ~ Sp(PSh(Z)), where
PSh(Z) is also equipped with the Day convolution symmetric monoidal structure. The
first universal property is therefore the combination of the universal property of presheaves
from [Ker, Tag 03W9] and the presentable universal property of stabilisation from [HA, Co-
rollary 1.4.4.5]. The universal property of Day convolution in the monoidal (respectively,
symmetric monoidal) case from [HA, Example 2.2.6.10] (respectively, Example 2.2.6.9 of
op. cit.) then upgrades this to the second claimed equivalence. n

Notation 3.83. Let C be a presentably monoidal co-category, and let f: Z — C be a
monoidal functor.

¢ We typically reserve the letter p for for the monoidal functor FilSp — C induced
by f. This functor in particular turns C into a (left) FilSp-module, which informally
is given by (where A € FilSp and X € ()

A®X :=p(A)®X.

We summarise this by saying that p gives C the structure of a monoidal deforma-
tion."%!

¢ We typically reserve the letter o for the (lax monoidal) right adjoint C — FilSp to p.
We call o the signature functor; if X € C, then we refer to ¢ X as the signature of X.

¢ If C is symmetric monoidal and f is a symmetric monoidal functor, then p is naturally
symmetric monoidal, and ¢ is naturally lax symmetric monoidal. In this case, we
say p gives C the structure of a symmetric monoidal deformation.

Roughly speaking, the functor p is characterised by preserving colimits and by sending T
in FilSp to the map f(—1 — 0). Thus, we can think of f as a ‘prescription’ for what the
map T in C ought to be.

Example 3.84. Let R be a filtered E,-ring. Then Modg (FilSp) is naturally an E;-monoidal
co-category, and the functor R ® —: FilSp — Modg (FilSp) is a monoidal functor, turning
Modg (FilSp) into a monoidal deformation. If R is a filtered Ew-ring, then this turns it
into a symmetric monoidal deformation.

In a precise sense, this example includes many deformations: all symmetric monoidal
deformations with compact unit that are generated by the spheres are of this form; see
Section 5.2. A

[BIThis is a bad choice of terminology. If O is an co-operad, one should define an O-monoidal deformation
as an O-algebra in Prl;. A monoidal functor f: Z — C gives rise to an E;-monoidal functor FilSp — C, but
this does not equip C with the structure of an E;-algebra in Prl;. (This is the usual difference between an
E;-algebra in Mod 4 (C) and an E;-map A — R in C.) However, in these notes, we are mostly concerned with
the symmetric monoidal (i.e., E«) case where this distinction goes away, so this abuse of terminology does
not have many ramifications for the rest of these notes.


https://kerodon.net/tag/03W9
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Using that p is monoidal, we can import structure from FilSp into C. For example, the
Eo-structure on Ct induces an E;-structure on p(C7). If p is symmetric monoidal, then
p(CT) also acquires an E-structure.

Remark 3.85. Using that ¢ is right adjoint to p, it follows that for X € C, the filtered
spectrum ¢ X is given by

-+ — mape(f(1), X) — map(f(0), X) — map(f(-1),X) — ---,

where map,(—, —) denotes the mapping spectrum of C, and where the transition maps
are induced by f. We see that, after forgetting the lax monoidal structure on o, it is
naturally isomorphic to filmap(1¢, —) from Construction 3.81.

Remark 3.86. It is difficult in general to obtain symmetric monoidal functors out of Z, as
it is not free as a symmetric monoidal co-category. We learned from Shaul Barkan that
t-structures are a source of such functors, using the Whitehead filtration; see [BVIN25,
Section 2]. We will use this in Section 4.3 to give synthetic spectra the structure of a
symmetric monoidal deformation.

So far, we have used a deformation structure on an co-category C to define similar-looking
operations in C as we have in FilSp, such as inverting and modding out by 7. In the
monoidal case, the functor o shows that these operations translate back to the respective
operations in FilSp. This both gives a more concrete interpretation of these operations,
and also ties the story of deformations into the study of spectral sequences.

To prove the desired properties of o, we use the following lemma. We refer to, e.g.,
[NPR24, Definition 3.5] for a definition of the projection map, and Section 3 of op. cit. for
an introduction to these ideas.

Lemma 3.87. Let C be a monoidal deformation. Let A € FilSp and X € C. Consider the natural
projection map
AQo(X) — o(p(A) ® X).

(1) If Ais dualisable, then the projection map is an isomorphism for all X € C.

(2) If o preserves colimits, then the projection map is an isomorphism for all A € FilSp and all
XeCl.

Proof. The first part follows from [NPR24, Lemma 3.8 (b)]. The second part follows from
the fact that, in this case, both sides preserve colimits in A and that FilSp is generated
under colimits by dualisable objects. u

In particular, the functor ¢ commutes with bigraded suspensions.

Theorem 3.88. Let C be a (symmetric) monoidal deformation which arises from a (symmetric)
monoidal functor f: Z — C.
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(1) Forevery X € C, we have a natural isomorphism
Trx = 0(Tx)-

In particular, o sends T-invertible objects in C to T-invertible (a.k.a. constant) filtered
Spectra.

(2) There are commutative diagrams of lax (symmetric) monoidal functors

¢ ——— FilSp ¢ —"— FilSp
<—)/Tl l(f)/r and (—)ﬁl l(*”
Modc.(C) —Z— Modc.(FilSp). C) —7— FilSp..

In particular, for X € C, we have natural isomorphisms

c(CteX)2Crteo(X) and o(XD)=o(X)2.

(3) The functor o preserves small colimits if and only if the monoidal unit of C is compact.

If this happens, then there is a commutative diagram of lax (symmetric) monoidal functors

¢ —"—— FilSp

A

Clt~'] —~— FilSp[t~1].
In particular, if o preserves colimits, then for X € C, we have a natural isomorphism

o(X[x 1)) 2 o(X)[r .

(4) The functor o is conservative if and only if the image of f generates C as a stable co-category
under colimits.

Proof. Item (1) and the Ct-part of item (2) follow from Lemma 3.87 (1). To prove that
o also preserves T-completion, we need to check that o preserves Ct-equivalences and
preserves Ct-local objects. The first again follows from the projection formula, and the
second follows because p preserves Ct-acyclics (being an FilSp-linear functor).

For item (3), note that since ¢ is exact, it preserves colimits if and only if it preserves
filtered colimits. The latter is equivalent to its left adjoint p preserving compact objects.
For this, it is equivalent to check that p sends a collection of compact generators of FilSp
to compact objects of C. As the filtered spheres S*° for s € Z form stable generators
for FilSp, and p(S%) = f(s), we see that ¢ preserves colimits if and only if f lands in
compact objects of C. Since f is monoidal and hence sends the unit to the unit, the latter



3.6. Deformations 90

condition implies that the unit of C is compact. Conversely, if the unit of C is compact,
then all dualisable objects of C are compact. Because f is monoidal and all objects of Z are
dualisable, it then follows that all values of f are compact. We conclude that o preserves
colimits if and only if the unit of C is compact.

If o preserves colimits, then Lemma 3.87 (2) implies that ¢ preserves t-inversion.

Finally, for item (4), we use again that the filtered spheres are generators, so that ¢ X is
zero if and only if for all s € Z, the mapping spectrum

mapgs, (8", 0X) = mape (p(8”°), X) = map(f(s), X)
vanishes. This shows the final claim. [ |

Remark 3.89. As explained in [NPR24, Definition 3.9, Remark 3.10], it follows from
Theorem 3.88 (3) that p is an internal left adjoint in FilSp-linear oco-categories (i.e., its right
adjoint ¢ is itself an FilSp-linear functor) if and only if the unit of C is compact.

We now introduce the notion of the signature spectral sequence. We will be more brief, as
we will develop this in detail in the next chapter in the case of synthetic spectra (which is
our main case of interest).

Definition 3.90. Let C be a monoidal deformation. If the unit of C is compact, then the
functor 7, s: C — Ab defined by

Ts(—) = [ 1, —]

preserves filtered colimits. It follows that for X € C, the spectral sequence underlying X
is of the form

B = mus(X/7) = [Z"1¢, X[tV & 71 (X) [T

Accordingly, we refer to this as the signature spectral sequence of X.

Theorem 3.88 tells us that we can understand this spectral sequence ¢ X through compu-
tations in C. For instance, item (2) tells us that ¢ X is conditionally convergent whenever
X is T-complete, and that the associated graded is given by applying ¢ to X /7. This is
particularly useful in cases where Modc+(C) is simpler than the original case of filtered
spectra, where Mod ¢ (FilSp) ~ grSp is topological in nature.

The above also tells us that the Omnibus Theorems from Section 3.5 carry over to the
deformation C, with all occurrences of the underlying spectral sequence replaced by the
signature spectral sequence. We have to be a little careful if the unit of C is not compact, as
then ¢ need not preserve t-inversion. Even if the unit of C is not compact, the truncated
Omnibus Theorem of Theorems 3.67 and 3.70 apply in C without change. In the non-
truncated case of Theorem 3.62, all results that do not compare 77, . X with 77, X"~ apply
in C as well. If the unit of C is compact, then all of the Omnibus Theorems apply in their
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entirety. In summary then, we learn that the Z[t]-module 7, . X captures the signature
spectral sequence of X.

Not just the Omnibus Theorem carries over to a deformation, but also the T-Bockstein
spectral sequence we used to prove it.

Variant 3.91. Let C be a monoidal deformation, and X € C. The T-adic filtration on X is
the filtered object Z°? — C given by

e x0T Tyl T X — .

Analogously to Construction 3.47, this leads to a trigraded spectral sequence which we
call the T-Bockstein spectral sequence of X, which is of the form

EV"® 2 7y 0y (X/T) = T X.

From Theorem 3.88, it follows that when we apply ¢ to the T-adic filtration on X, we
obtain the T-adic filtration on ¢ X. It follows that the 7-BSS of X is the 7-BSS of cX. We
may therefore freely use the results of Section 3.4 for this spectral sequence; in particular,
it captures the signature spectral sequence of X.

Two structural properties of deformations, namely cellularity and evenness, will be dis-
cussed later in Sections 5.1 and 5.3. For now, we finish this chapter with a few examples
of deformations, which are of a different flavour than the one we will meet in the next
chapter.

We learned the following example from Christian Carrick and Lennart Meier. See also
[BHS22, Examples A.8 and A.9].

Example 3.92. Let Sp., denote the co-category of genuine Cy-spectra. The Euler class a,
gives Spc, the structure of a deformation. (To avoid notational confusion, we will avoid
the names p and ¢ for the deformation functors.) More specifically, let o denote the sign
representation of C. Then the inclusion of fixed points results in a map S° — S7, which
stably results in a map called the Euler class

ag': S—U’ —> S.

We expect, but do not check in detail, that this assembles to a monoidal functor

g ag g

N S g

(Note, however, that this cannot be made symmetric monoidal, due to a nontrivial switch
map for S” ® §7.) This monoidal functor induces a monoidal left adjoint FilSp — Sp ,
resulting in the promised monoidal deformation structure. The generic fibre is equivalent
to Sp. Interestingly, its special fibre is also spectra: it is given by modules over S/a, =
X% C,, which by [BDS15, Theorem 1.1] is equivalent to Sp (via a lift of the restriction-
coinduction adjunction).
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Under these identifications, T-inversion is identified with geometric fixed points, and
T-completion is identified with Borel completion (i.e., inverting those maps that induce
an isomorphism on homotopy fixed points). As a result, the pullback square of Proposi-
tion 3.79 becomes, after taking (genuine) fixed points, the Tate square

XCZ thz
|
X<I>C2 XtCZ .

The resulting 7-BSS is identified with the 4,-BSS, which is the homotopy fixed-point
spectral sequence.

One could mimic these constructions for Sp. for a general finite group G in the place of
C,. However, the resulting deformation would be rather contrived: for general G, the
structure of Sp; is better captured by taking all subgroups of G into account. Only if
G = (3 is the resulting structure exactly that of a deformation. A

Finally, we end with an example that is not strictly speaking a deformation, but which is
close enough in that it also allows theorems from filtered spectra to be imported over.

Example 3.93 (Recovering the p-Bockstein spectral sequence). Fix a prime p, and
consider the functor f: Z — Sp given by

P S 4 S P S P

This functor induces an adjunction
P
FilSp ——— Sp.
[

However, neither f nor p can be made monoidal. Indeed, the functor p sends 7 to p, and
hence sends Ct to S/p. The latter does not admit an E;-structure for any p, preventing p
(and hence f) from being monoidal.

While strictly speaking not a deformation, we can still use this adjunction to import
information from the T-Bockstein spectral sequence. Namely, we can check by hand that
o sends Tx to T,x. In Sp, the map 7 is given by p, which ¢ sends to p because it is additive.
Further, by Remark 4.32, the functor ¢ sends a spectrum X to

4 p 4 p

X X X

so indeed ¢ sends Tx to T,x. It follows that o sends the p-Bockstein filtration on X to the
T-Bockstein filtration on 0 X. The resulting trigraded spectral sequence we compute to be
the p-BSS for X with an additional filtration tagged on. More specifically, at every level
of this new filtration, it is the p-BSS for X, and the transition maps for this new filtration
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are all given by multiplication by p. Using this, we can deduce the analogous version of
Theorem 3.52 for the p-BSS, at least those parts that do not depend on any monoidality
properties of T (such as Theorem 3.52 (5)).

For a monoidal version of this example, consider instead the functor Z — D(Ab) given

by

P p p 4

zZ 4 Y4

This functor is symmetric monoidal: it lands in the heart of D(Ab), so equivalently
is given by a functor Z — Ab. It is easy to check that this functor describes a strict,
multiplicative filtration on the commutative ring Z[%], and as a result is canonically a
symmetric monoidal functor. It follows that this gives D(ADb) the structure of a symmetric
monoidal deformation. We can therefore directly deduce the analogue of Theorem 3.52
by using Theorem 3.88, thereby recovering, e.g., [Pal05, Theorem 3.8].

Informally, we may summarise both situations by saying that we “put T equal to p” and
thereby recover the p-Bockstein spectral sequence. However, this slogan should be taken
with a grain of salt, as it ignores the monoidality issues raised above, which depend on
the specific category one is working with. In particular, only in the monoidal case will we
be able to import multiplicative properties of the T-BSS. A



Chapter 4

Synthetic spectra

Previously in Section 2.5, we discussed the classical definition of the Adams spectral
sequence. The more modern way to interact with Adams spectral sequences is to use
synthetic spectra. This chapter is intended both as a first introduction to and as a manual
for working with synthetic spectra. Compared to most of the existing literature, our
distinctive focus is to understand these through the lens of filtered spectra.

We review the main categorical features of synthetic spectra in Sections 4.1 and 4.2. There,
among other things, we encounter the synthetic map 7. In Section 4.3, we show that
this gives the co-category of synthetic spectra the structure of a (symmetric monoidal)
deformation in the sense of Section 3.6.1, and we study the structure of this deformation.
In particular, this results in a functor

o: Synp —» FilSp

that preserves limits and colimits and sends 7 to the filtered map 7. We refer to ¢ X as the
signature of X. Consequently, we obtain a synthetic Omnibus Theorem, describing the
homotopy groups of a synthetic spectrum X in terms of the spectral sequence underlying
cX.

The question of which spectral sequence this is requires a computation. In Section 4.4,
our goal is to compute this for so-called synthetic analogues; this is both an important
foundational result, and also showcases how to work with synthetic spectra. There is a
lax symmetric monoidal functor

v: Sp — Syn;

called the synthetic analogue functor. We show that the signature of the synthetic analogue
of a spectrum is its E-Adams spectral sequence; see Section 4.4, particularly Theorem 4.71.
Finally, in Section 4.5 we collect some implications of this result, and briefly discuss some
notational conventions.

Remark 4.1. In addition to providing a new interface for interacting with Adams spectral
sequences, synthetic spectra have also been used in setting up obstruction theories; see

94
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[Bar23; HL17; PV22]. We do not (yet) discuss these obstruction theories in this version of
the notes.

For the most part, this chapter consists of an overview of results from [Pst22]. We learned
much of the relationship with filtered spectra from [Bar23], [BHS22, Appendix C], [CD24,
Section 1], and [Pst25]. Some results in this chapter are modifications of results appearing
in [CDvN25, Section 1].

4.1 Categorical properties

Before we can do more serious work, we need to know the basic properties and structure
of the category we are dealing with. We do not review the constructions given by
Pstragowski, but content ourselves with summarising the main properties, preferring to
work with synthetic spectra in a ‘model-independent way”.[!]

Construction 4.2. Let E be a homotopy associative ring spectrum of Adams type. In
[Pst22], Pstragowski constructs a symmetric monoidal co-category Syn, of E-based syn-
thetic spectra, together with a unital lax symmetric monoidal functor v: Sp — Syn.. We
call v the synthetic analogue functor.

We may refer to E-based synthetic spectra as E-synthetic spectra, or even simply by synthetic
spectra if E is clear from the context. On the opposite end, when we want to vary the
variable E, we would write vg for v, emphasising it as the E-synthetic analogue. It would
be more principled to write Syn, (Sp) instead of Syn,, indicating that it is a modification
of the co-category Sp. For simplicity, we will stick to the shorter name in this chapter.

Notation 4.3. An E-synthetic Ex-ring is an E-algebra object in Syn. If E is clear from
the context, then we may also refer to such an object as a synthetic Ee-ring.

Remark 4.4. Just as with the Adams spectral sequence, the role of the co-category of spectra
here is not of fundamental importance: there should be a similar modification of any nice
enough stable co-category with a type of Adams spectral sequence. We stick to the case of
spectra here to more conveniently cite Pstragowski’s construction. A more general theory
can be found in [PP23], but this construction differs from the one in [Pst22] in various
ways; see [PP23, Section 6.5].

Remark 4.5. Although the notation seems to suggest otherwise, the symmetric monoidal
oco-category Syn, depends on much less data than the ring spectrum E. This is because the
Adams spectral sequence depends on less data than the ring spectrum E; see Remark 2.84.
In particular, Syn; is not sensitive to a potential coherent multiplicative structure on E,
nor does it require it for its construction as a symmetric monoidal co-category.

[1lWe mean this in a loose way: we specifically choose the construction from [Pst22] over the other available
ones. However, phrasing our arguments and computations in this way should make them more robust and
more easily adapted to other synthetic contexts.
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Warning 4.6. The co-category Syn; is functorial in E, and in fact the construction does
not require the assumption that E is of Adams type. However, it only gives the correct
answer if E is of Adams type. For instance, as observed by Pstragowski and explained by
Schéppi in [Sch20, Theorem 2.3.7], taking E = MU or E = Z results in the same symmetric
monoidal co-category, even though the Z-Adams spectral sequence is wildly different
from the MU-Adams spectral sequence (see Example 2.90).

Because of this warning, throughout this chapter we stick to the following assumption.

Notation 4.7. For the remainder of this chapter, E denotes a fixed choice of a homotopy-
associative ring spectrum of Adams type.

We begin by studying some categorical properties of synthetic spectra. Recall the notion
of a finite E-projective spectrum from Definition 2.86.

Proposition 4.8.
(1) The co-category Syny is stable.

(2) The co-category Syny is presentable, and the symmetric monoidal structure preserves
colimits in each variable separately; that is to say, Syny is presentably symmetric monoidal.

(3) If P is a finite E-projective spectrum, then vP is a compact and dualisable object in Syng,
with dual v(P). In particular, the monoidal unit is compact.

(4) As a stable co-category, Syny is compactly generated under colimits by the synthetic
analogues of finite E-projectives. That is, the collection of =X vP, for P finite E-projective
and k € Z, forms a set of compact dualisable generators. In particular, Syn is compactly
generated by dualisables.

(5) The monoidal co-category is rigid in the sense that an object is compact if and only if it is
dualisable.

Proof. Ttems (1) and (2) are [Pst22, Proposition 4.2], and items (3) and (4) are [Pst22,
Remark 4.14]. Item (5) then follows formally from the fact that the unit is compact and
that it has a set of comapct dualisable generators; see, e.g., (the footnote to) [NPR24,
Terminology 4.8]. u

Next, we turn to properties of the functor v.
Proposition 4.9.

(1) The functor v: Sp — Syny is fully faithful, additive, and preserves filtered colimits. In
particular, v preserves arbitrary coproducts.

(2) Consider a cofibre sequence of spectra

x -ty 8,2
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Then the induced sequence

vf vg

vX vY vZ

is a cofibre sequence of synthetic spectra if and only if

0 EX TS EY ¥ EZ o0

is short exact, or in other words, if the boundary map Z — %X is zero on E.-homology.

(3) The comparison map vX @ vY — v(X ® Y) coming from the lax monoidal structure on v
is an isomorphism whenever X or Y is a filtered colimit of finite E-projective spectra.

More generally, if the E.-homology of X or Y is flat as an E,-module, then the map
vX VY — v(XQY) is a vE-equivalence.

Proof. Item (1) follows from [Pst22, Lemma 4.4 and Corollary 4.38], item (2) is [Pst22,
Lemma 4.23], and item (3) is [Pst22, Lemma 4.24]. [ |

Both conditions of Proposition 4.9 (3) are a type of flatness condition. This is obvious for
the second one. For the first, compare this with the algebraic result that a module over a
ring is flat if and only if it can be written as a filtered colimit of finite free modules; see
[Stacks, Tag 058G].

Example 4.10. The definition of Adams type directly implies that vE® X — v(E ® X) is
an isomorphism for all spectra X. A

Example 4.11. Suppose E = F,, or more generally that E is a homotopy-associative ring
spectrum such that 77, E is a graded field. Then every finite spectrum is finite E-projective.
The smallest subcategory of Sp that contains all finite spectra and is closed under filtered
colimits is equal to all of Sp. We therefore learn from Proposition 4.9 (3) that v is actually
a strong symmetric monoidal functor if 77, E is a graded field. A

Remark 4.12. The reader may gain intuition for the above properties by thinking of v
as being similar to the Whitehead filtration functor Wh: Sp — FilSp. In fact, this is
more than a formal analogy: in the case E = S, the co-category Syng is equivalent to
Modwn s (FilSp), and this equivalence identifies v with the Whitehead filtration functor;
see Corollary 5.13.

Take particular note that v is not an exact functor, even though it is a functor between stable
oco-categories. For example, Proposition 4.9 (2) implies that X(vX) = v(XX) if and only if
E.X = 0. In terms of the E-Adams spectral sequences, having vanishing E-homology is a
very degenerate case, so the functor v practically never preserves suspensions.

The difference between suspending in spectra and in synthetic spectra has a conceptual
meaning as well: the former has the effect of shifting its Adams spectral sequence one to
the right, while suspending its synthetic analogue also shifts it down by one filtration.


https://stacks.math.columbia.edu/tag/058G
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This is made precise by the following definition of the synthetic bigraded spheres. The
indexing convention we use here turns out to be the most practical; we defer a more
detailed explanation to Remark 4.37.

Definition 4.13 (Synthetic bigraded spheres). Let n and s be integers.
(1) The synthetic (n, s)-sphere is
gns .— ¥ 5 V(STH’S)‘
We refer to n as the stem, and to s as the filtration.
(2) We write ™°: Syn, — Syn, for the functor given by tensoring with §"* on the left.

(3) We write 71,,s: Syn; — Ab for the functor

Ts(—) = [S™°, —].

(4) The map 7: S%~! — S%0 is the colimit-comparison map
7: 8% 1 =3 (ws™1) — vSs =%,

If X is a synthetic spectrum, then tensoring it with the map 7: S%~! — S results
in a map ¥0-1X — X, which we denote by Tx, or by T when there is no risk of
confusion.

Note that 77 . naturally lifts to a functor Syn; — Modg/)(bigrAb).

Remark 4.14. If X is a spectrum, then we also have the natural colimit-comparison map
Yv(271X) — vX. This coincides with the map T ® vX by [Pst22, Proposition 4.28].

Remark 4.15 (Cellularity). It is not necessarily true that bigraded homotopy groups detect
isomorphisms of synthetic spectra. If this is the case, we say that Syn; is cellular. For
many E, this is the case. We discuss this issue more in Section 5.1. For applications to
spectral sequences, one can equally well work with the cellularisation of Syn,, so we
view this as a technicality.

Remembering the precise definition of S is not the most important; it is enough to
remember the following key facts.

Example 4.16.

(1) For every n, the synthetic spectrum v(S") is the bigraded sphere S™?. This is the
tirst instance where we see that v places everything in Adams filtration zero; see
Section 4.5 below for a further discussion. Later we will also see that these are the
only synthetic spheres that are in the essential image of v: see Example 4.66.

We will abuse notation and abbreviate Y simply by S, and refer to it as the
synthetic sphere. Most of the time, the context will allow one to infer whether the
sphere spectrum or the synthetic sphere is meant by this notation.
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(2) More generally, if X is a spectrum, then we have a natural isomorphism
YO yX = y(Z"X).

Indeed, this follows since v is strong symmetric monoidal when one factor is a
sphere; see Proposition 4.9 (3).

(3) Categorical suspension is given by the bigraded suspension 1. A

Remark 4.17 (Koszul sign rule). It is possible to set up matters so that if A is a homotopy-
commutative algebra in Syn, then 77, . A becomes a bigraded ring with a Koszul sign rule
according to the first variable (i.e., the stem). Doing this involves choices, as explained
by Dugger [Dugl4], see also [Dug+24]. The choice described by Pstragowski in [Pst22,
Remark 4.10], and explained in detail by Chua in [Chu22, Section 6], results in this sign
on homotopy groups.

As with any symmetric monoidal stable co-category, synthetic spectra have an internal
notion of homology. We regard it as a bigraded object.

Notation 4.18. Let A and X be synthetic spectra, and let n and s be integers. We write
Aps(X) for m, (A ® X).

Finally, we make a few comments about notation and indexing compared to the literature.

Remark 4.19. In the specific case of F,-synthetic spectra, it is becoming more and more
common to use the letter A to denote the map otherwise denoted by 7; see, e.g., [BIX25]
(particularly Section 1.1 therein). This is done to allow for computations that involve both
BP-synthetic and F,-synthetic arguments at the same time. Because these notes are not
aimed at these computations, we will still use the letter T even in the F,-synthetic case.

Although the grading convention of Definition 4.13 has become more standard, it is not
the only one in the literature. We refer to the indexing of Definition 4.13 as Adams grading
of synthetic spectra. This is not the convention used in [Pst22], which instead follows the
motivic grading. Unless explicitly said otherwise, we will not use motivic grading in these
notes.

Remark 4.20 (Motivic grading). The motivic grading on synthetic spectra is to define
St,w = Zt—w V(Sw).
Conversion from Adams to motivic grading, and vice versa, is given respectively by
(n,s) — (n, n+s) and (t,w) — (t, w—t).

The only cases in which motivic grading agrees with Adams grading are those where the
stem is 0. (In particular, T has bidegree (0, —1) in both conventions.) In [Pst22], the degree
w is called the weight, and the difference t — w is called the Chow degree. In Adams
grading, the weight of $"* is given by n 4+ s, while the Chow degree is given by —s. The
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motivic grading is designed to match with the indexing conventions of motivic homotopy
theory; see Section 5.4 for more information.

4.2 The homological t-structure

One of the most important features of Syn, that distinguishes it from the category of FilSp
is the existence of a particular t-structure. Following Burklund—-Hahn-Senger [BHS23],
we refer to this t-structure as the homological t-structure; it is referred to as the natural
t-structure in [Pst22]. Although this is indeed the default t-structure on synthetic spectra
for our purposes, we prefer this more descriptive name.

As the name suggests, the defining feature of this t-structure is that it looks at vE-homology
of E-synthetic spectra to measure (co)connectivity, not at the bigraded homotopy groups.
This has both its upsides and downsides. On the one hand, this homology tends to be a
lot simpler than the homotopy, due to the special role that E plays for E-synthetic spectra.
On the other hand, this means that taking truncations or connective covers can have very
unpredictable effects on bigraded homotopy groups.

Remark 4.21. Carrick and Davies [CD24, Section 2] define t-structures on Syn; based on
the bigraded homotopy groups.

Definition 4.22. The homological t-structure on Syn; is the t-structure where a synthetic
spectrum X is connective if and only if

VE,s(X) =0  whenevers > 0.

We will write 7>, and 1<, for the n-connective cover and n-truncation functors with
respect to this t-structure, respectively.

Theorem 4.23. The homological t-structure is an accessible t-structure on Syny that satisfies the
following.

(a) A synthetic spectrum X is connective if and only if

VE,s(X) =0  whenevers > 0.

(b) A synthetic spectrum X is O-truncated if and only if X is vE-local and

VE,s(X) =0  whenevers < 0.

(c) Let X be a synthetic spectrum. The connective cover T>0X — X induces an isomorphism
VE; s(Tt=0X) =N VE, s(X) whenever s < 0.
Likewise, the O-truncation X — 1< X induces an isomorphism

o

VE,s(X) — VE,s(t<0X)  whenevers > 0.
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(d) For every spectrum X, the synthetic spectrum vX is connective.

(e) There exists a monoidal equivalence of categories
Syng ~ grComody

under which ©™° becomes the functor [n], and which fits into a commutative diagram of lax
monoidal functors

Sp — " Syny

ro~ =

grComodp .

Moreover, if E is homotopy commutative, then this equivalence and the above diagram are
naturally symmetric monoidal.

(f) The t-structure is right complete (but for general E, not even left separated).
(g) The t-structure is compatible with filtered colimits.
(h) The t-structure is compatible with the monoidal structure.

Proof. Property (a) alone determines this t-structure uniquely. By Theorem 4.18 of [Pst22],
this definition of the t-structure agrees with the definition from Proposition 2.16 of op.
cit., which has the remaining desired properties by Propositions 4.16, 4.18, and 4.21 of op.
cit. n

In fact, as we will re-prove in Example 4.66 below, the vE-homology of vX has a very
simple form: there is an isomorphism of bigraded Z[7]-modules

VE, .(vX) & E. X][7]

where E, X is placed in bidegree (n,0). This property has useful consequences for working
with v; see Remark 4.46 for instance. It is also one of the first instances where we see that
Syn; is more suited for working with Adams spectral sequences than FilSp: as we will see
in Warning 4.35, the filtered spectrum underlying vX is rarely connective in the diagonal
t-structure on FilSp, making it harder to work with that filtered spectrum directly.

Remark 4.24. Tt follows from item (g) that (Syng )¢ is a Grothendieck prestable co-category;
see [SAG, Proposition C.1.4.1].

Remark 4.25. There exist examples for which the monoidal equivalence Syng ~ grComody r
cannot be made symmetric monoidal. One can think of this as saying that the ‘correct’
braiding on grComod .  is not the usual algebraic one, but rather a more exotic ‘topolo-
gical’ one. For an example of this phenomenon, see [HL17, Section 6] and [BP23, Section 4],
where E = K(n) and where Sp is replaced by (K(n)-local) modules over Morava E-theory.

Finally, let us make a few comments regarding notation and indexing.
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Remark 4.26. The description of the connective objects is somewhat confusing, in that an
object is connective when certain groups in a positive degree vanish. This clash is because
the filtration in Adams spectral sequences is indexed cohomologically, while (at least in
homotopy theory) we usually index t-structures homologically. Arguably, it would be
less confusing to index this t-structure cohomologically instead (as is more common in
algebraic geometry), writing TS" for what we normally denote by 7>_,, and =" for T<_,,.
However, to prevent confusion with the standard convention in homotopy theory, we
will refrain from doing this.

Warning 4.27. Often with t-structures, one writes 7'(,? for the functor " 1<, 7>, con-
sidered as landing in the heart of the t-structure. Because this t-structure is measured
by homology instead of homotopy, this notation can get confusing: the functor 7Ty is not
given by bigraded homotopy groups. Instead, for X € Syn;, by (the comment following)

[Pst22, Theorem 4.18], we have an isomorphism of graded E. E-comodules
707 (X) = VEuin,—n(X) = VE., (X)[-1].

Note also the minus sign in the filtration on the right-hand side; this is again due to the
difference between homological and cohomological grading (cf. Remark 4.26). To avoid
the potential confusion with the bigraded homotopy groups, we will generally avoid the

notation 71,? .

4.3 Synthetic spectra as a deformation

With the foundational properties and structure in hand, we can relate synthetic spectra to
spectral sequences. We begin by defining a deformation structure.

Lemma 4.28. There is a natural symmetric monoidal structure on the functor Z — Syn given
by the multiplication-by-T tower on the unit:

) T g0,-1 T S T go1 T

Proof. We follow the argument given in the proof of [Law24b, Corollary 6.1]. In Pstragowski’s
model [Pst22], the synthetic sphere S’ is defined as the sheafification of the presheaf
T>_smap(—,S), with 7 induced by the suspension-comparison map. The Whitehead
filtration functor is lax symmetric monoidal (Remark 2.25), as is sheafification, so the
E.-structure on the sphere spectrum induces a symmetric monoidal structure on the
multiplication-by-T tower. n

We will use the notation and terminology introduced in Notation 3.83; let us repeat it here
for convenience.

Notation 4.29. By the universal property of FilSp from Proposition 3.82, the symmetric
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monoidal functor Z — Syn; from Lemma 4.28 induces an adjunction

0
FilSp ? Syng

where the left adjoint p is a symmetric monoidal functor. As a result, the functor ¢ is
naturally lax symmetric monoidal. If X is a synthetic spectrum, then we refer to the
filtered spectrum ¢ X as its signature.

Remark 4.30 (History). This functor has appeared before in [BHS22, Appendix C] under
the name i,. The name signature was introduced in [CD24], with the letter ¢ starting to be
used in [CDvIN25; CDvIN24] (and in later revisions of [CD24]).

The functor p lets us import important structure from FilSp. For instance, for every k > 1,
the synthetic spectrum Ct* inherits an Eeo-structure from the filtered spectrum Ct*.[?]

As explained in Section 3.6, the functor ¢ can be thought of as an “‘underlying spectral
sequence’ functor. More precisely, as a consequence of Theorem 3.88, it sends the synthetic
map Tx to the transition map of ¢ X, and preserves modding out by 7. We now check that
it also preserves colimits, and in particular preserves T-inversion.

Proposition 4.31.

(1) The functor o preserves colimits, and is even FilSp-linear. In particular, o preserves
T-inversion, and p is an internal left adjoint in FilSp-linear co-categories.

(2) The functor o is conservative if and only if Syn is cellular.

Proof. This follows from Theorem 3.88 (3) and (4), and Remark 3.89, using that the syn-
thetic sphere is compact, and that SO% for s € Z form stable generators if and only if Syn,
is cellular. [ |

Remark 4.32. As a special case of Remark 3.85, the functor ¢ can be described as follows.
Write map(—, —) for the mapping spectrum functor of the stable co-category Syn;. Then
o is given by levelwise applying map(S, —) to the multiplication-by-t tower functor. In
diagrams: for X € Syng, the filtered spectrum o X is given by

- —"— map(S, % 1X) —— map(S, X) —— map(S, 2*X) —— .-

Remark 4.33. The adjunction p - ¢ is very close to a monadic adjunction. More precisely,
it is a monadic adjunction if and only if Syn; is cellular. What requires more assumptions
is to then identify the monad on filtered spectra without making reference to the synthetic
category. We discuss these things more in Section 5.2.

(2] Alternatively, one can use Proposition 4.47 and the monoidality of the homological t-structure to give CT
an Ee,-structure; this is how it is done in [Pst22, Corollary 4.30].
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4.3.1 The signature spectral sequence

The deformation picture tells us how to understand the bigraded homotopy groups of
a synthetic spectrum. Namely, the synthetic bigraded spheres are in the image of the
left adjoint p; as a result, understanding synthetic homotopy groups is equivalent to
understanding the filtered homotopy groups of ¢ applied to the synthetic spectrum. The
latter, as explained by the Omnibus Theorem, captures a spectral sequence.

The only subtlety in this story is that there is a reindexing taking place when passing
between filtered and synthetic spectra. To avoid confusion, we will for the moment
distinguish the filtered and synthetic settings by writing

n,s n,s
Sgi and S,

for the filtered and synthetic spheres, respectively, and similarly 7fl, and 73" for the
homotopy groups.

Proposition 4.34.
(1) Forall n and s, we have an isomorphism

p(Sg’) = Sgn "

(2) For all n, we have a natural isomorphism of graded Z[t|-modules (where X € Syny)

) = 7l ().
(3) The functor p is right t-exact (with respect to the diagonal t-structure on FilSp and the
homological t-structure on Synp); equivalently, the functor o is left t-exact.

Proof. The functor p is characterised by preserving colimits and sending S(f)i'f to Sgg,sn for all
s. In particular, p is exact, so it preserves arbitrary suspensions. Using the identifications

Sif 2L'Sg  and  Iyn(-) =Sy @,
the first isomorphism follows. Using that p is left adjoint to ¢, this implies that for every
n and s, we have a natural isomorphism of abelian groups (where X € Syn;)

e (X) 2 all (0X).

n,s+n

By Theorem 3.88, the functor ¢ sends Tx to 7, x, so this assembles to the claimed isomorph-
ism of graded Z[t]-modules.

For the final claim, recall that (FilSp)>o is the smallest subcategory generated under
colimits by the objects S¢i° for n —s > 0. Since synthetic analogues are connective, it
follows that Sléy'il = X "y(Sk") is (—u)-connective in the homological t-structure. It
follows that p sends Si;° for n —s > 0 to a connective synthetic spectrum. Because p
preserves colimits, it follows that it restricts to a functor (FilSp)>o — (Syng)>o, proving
the claim. n
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Warning 4.35. Even though p(Sg;’) is a synthetic sphere, the filtered spectrum o (Sgjy) is
very different from a filtered sphere. Indeed, the spectral sequence associated to a filtered
sphere is uninteresting (see Example 2.30), while the spectral sequence underlying o (S¢jn)
is (a shift of) the E-Adams spectral sequence for the sphere spectrum (see Theorem 4.71
below), which is very interesting and highly nontrivial for many E. In particular, p is very
far from preserving bigraded homotopy groups. This also implies ¢ is not right t-exact.

Proposition 4.34 tells us that the synthetic homotopy groups capture a spectral sequence;
we give it a special name.

Definition 4.36. Let X be a synthetic spectrum. The signature spectral sequence of X is
the spectral sequence underlying the filtered spectrum o¢X.

We will use second-page indexing for this spectral sequence, so that it is of the form
By = mt,s(CT® X) = my(X[t 1)),

The Omnibus Theorem makes precise the way in which the synthetic homotopy groups
capture this spectral sequence. One has to be slightly careful in that we reindexed the
above to start on the second page, which substracts one from powers of T in the Omnibus
Theorem. For example, d,-differentials in the signature spectral sequence of X introduce
7"~ !-torsion in 71, . X. We spell this out in the non-truncated case in Section 4.5 below.

Remark 4.37. We use second-page indexing because, for X a synthetic analogue, the filtered
spectrum o X is the décalage of an Adams spectral sequence. As a result, it makes most
sense to index this spectral sequence to agree with the usual indexing for Adams spectral
sequences. The definition of synthetic spheres from Definition 4.13 was chosen exactly
to fit with second-page indexing. Because we use first-page indexing on filtered spectra,
this has the unfortunate side effect of causing the reindexing as in Proposition 4.34 (1).
The reindexing (n,s) — (n, s — n) of Proposition 4.34 is precisely the reindexing of
Remark 2.37.

Remark 4.38. The distinction between the similar, but different, terms signature and signa-
ture spectral sequence is intentional. The former is a filtered spectrum, and as a result is
able to capture more intricate structures (e.g., E,-structures), while the latter is only an
algebraic object. However, we will not need to make this distinction very often.

The bare formalism only takes us so far: it does not tell us which spectral sequences
arise in this way, nor does it tell us what the structure of t-inverted synthetic spectra or
Ct-modules in synthetic spectra are. We will investigate the second question first, leaving
the computation of signatures for Section 4.4. As advertised in the introduction, we will
show that Ct-modules are of an algebraic nature, forming a type of derived co-category
of an abelian category. This gives signature spectral sequences a structural advantage
over the one coming from a bare filtered spectrum: the starting page is, in a sense, entirely
algebraic.
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Before we begin, let us briefly record the definition (and reindexing) of the 7-BSS in the
synthetic setting.

Variant 4.39. If X is a synthetic spectrum, then its T-adic filtration is the filtered synthetic
spectrum Z°F — Syn, given by

e 302 Tyl T X ——

Analogously to Construction 3.47, this leads to a trigraded spectral sequence that we call
the T-Bockstein spectral sequence of X, which is of the form

= Ty X.

E0S o 7Tn,w+s(X/T) ifs>0
! 0 else

Its differential df is of tridegree (—1,1,r) for r > 1. Note that when we apply ¢ to the
T-adic filtration on X, we obtain the T-adic filtration on ¢ X. Using Proposition 4.34, it
follows that the 7-BSS of X is merely a reindexing of the 7-BSS of ¢ X; the reindexing is
given by

B} (X) 2 Ef T (0X).

We may therefore freely use the results of Section 3.4 for this spectral sequence; in
particular, it captures the signature spectral sequence of X. Note that this is a situation
where we use second-page indexing for ordinary spectral sequences (coming to us from
the conventions for synthetic spectra), but nevertheless use first-page indexing for the
corresponding 7-BSS; see Remark 3.55 for a further discussion of this. If we use second
page indexing for both (see the previously cited remark), then we obtain the indexing of
the 7-BSS used in, e.g., [BHS23, Theorem A.8].

4.3.2 Inverting T

Recall that the functor v: Sp — Syn; is fully faithful. However, since it is not an exact
functor, we should not think too strongly of the image of v as an embedding of spectra
into synthetic spectra. If we make v exact in a universal way, then this does result in a
good embedding of spectra into synthetic spectra, and these happen to be exactly the
T-invertible synthetic spectra.

As in Notation 3.74, we write Syn, [t ] for the generic fibre of the deformation Syn;. By
Remark 3.75, this is the full subcategory of Syn; on the T-invertible synthetic spectra, and
is moreover a smashing localisation of Syn.

Definition 4.40. Write & : Sp — Syn; for the functor v(—)[t!].

The functor X is also referred to as the spectral Yoneda embedding. By definition, & lands
in T-invertible synthetic spectra.
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Theorem 4.41 ([Pst22], Theorem 4.37). The functor X is fully faithful, exact, and symmetric
monoidal, and restricts to a symmetric monoidal equivalence

%:Sp — Syng[t1].
Notation 4.42. We write (—)™=! for the composite
Syng BN Syng[t~1] ~ Sp.

The following example is the analogous one to Example 3.22.

Example 4.43. Recall the definition S"* = £ 7°v(S"*%) from Definition 4.13. As t-
inversion is an exact functor on synthetic spectra, it preserves suspensions, so we find
that

St = u(S" ) [T = 2K (S"FF) = K(SM).

In other words, (S™*)7=! 2 §". We can think of this as saying that inverting T forgets the
Adams filtration. A

This identification is compatible with our earlier identification of FilSp[t~!] from Sec-
tion 3.2.1.

Proposition 4.44. The adjunction p - o restricts to an adjoint equivalence between T-invertible
objects. Moreover, this equivalence fits into a commutative diagram of symmetric monoidal
equivalences

Sp

= TN
p
FilSp[t~1] Syng[t71].

g

In particular, for every spectrum X, the colimit of the filtered spectrum o(vX) is naturally
isomorphic to X.

Proof. The functors p Const and & are symmetric monoidal colimit-preserving functors
Sp — Syn;. By the universal property of Sp, it follows that they are naturally isomorphic
as symmetric monoidal functors; see [HA, Corollary 4.8.2.19]. By two-out-of-three, the
functor p restricts to an equivalence between t-invertible objects. Because ¢ is right
adjoint to p, it follows that ¢ restricts to an inverse for it.

The final claim follows from the isomorphism ¢ (v(X)[t~!]) 2 Const X and the fact that
o preserves T-inversion by Proposition 4.31. n

So far, we have focussed on v and defined X in terms of it. It is also possible to go in the
other direction and characterise v in terms of X, using the homological t-structure.

Proposition 4.45. Let X be a spectrum.
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(1) The t-inversion map
vX — X(X)

is a connective cover with respect to the homological t-structure.

(2) There is a natural isomorphism of functors Z°P — Syn between the Whitehead filtration

of X(X),
e K (X)) — k(X)) — g (X)) —— -

and the multiplication-by-t tower on vX,

Tyl Ty T30l x Ty

Proof. The first is [Pst22, Proposition 4.36], and the second follows from the same argu-
ment as in Lemma 4.28. u

Remark 4.46. The functor v: Sp — Syn; is neither a left nor right adjoint, as it is not even
an exact functor. When considered as landing in connective synthetic spectra however, its
categorical properties improve: it is then right adjoint to inverting 7. This follows from
the isomorphism v = 7> o & and by pasting adjunctions: the horizontal composites in

()

Sp —Y Syng[t7!] ¢ Syng - > (Syng)>o

form the adjunction

4.3.3 Modding out by T

Although t-invertible synthetic spectra are equivalent to T-invertible filtered spectra,
modules over the cofibre of T are very different in synthetic spectra compared to filtered
spectra. This distinction is controlled by the homological t-structure.

Proposition 4.47. For every spectrum X, the natural map vX — Ct ® vX exhibits the target
as the O-truncation of the source. In particular, we have a natural isomorphism

CTt®vX = E.(X)

where we regard the right-hand side as an element of grComod  ~ Syng.

Proof. The first statement is [Pst22, Lemma 4.29]. The final claim follows by combining
this with Theorem 4.23 (e). [ ]
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Morally, CtT-modules in Syn; are equivalent to the derived co-category of graded E,E-
comodules. This is not entirely true, as for most E, the unit of D(ngomodE* E) is not a
compact object.®] Accordingly, to make such a statement true, we need a modification
of this derived co-category to have a compact unit. It turns out that this modification is
actually an enlargement.

The idea behind this construction is that instead of inverting homology-isomorphisms
of chain complexes of comodules, we should invert homotopy-isomorphisms. Hovey
[Hov04] constructs a model category doing this; see also the introduction to op. cit. for
a further motivation for this construction. Barthel-Heard—Valenzuela [Bar+21] give the
following description of the underlying co-category of Hovey’s model category; see also
[Pst22, Section 3.2] for a summary.

Recollection 4.48. Let (A,T) be a graded Hopf algebroid. Write Perfr for the thick
subcategory of D(ngomod( A,r)) generated by the dualisable (ordinary, non-derived)
comodules over (A, I') (considered as objects in the heart the derived co-category). Define
the stable comodule co-category as

Stable 4 r) = Ind(Perfr).

The inclusion functor Perfr — D(grComod 4 r)) induces a functor Stable 4 r) — D(grComod 4 1),
and this turns out to have a fully faithful right adjoint:

Stable(4r) —— D( grComod 4 py ). (4.49)

As Perfr is closed under tensor products, the co-category Stable 4 ry is naturally a symmet-
ric monoidal functor, and the localisation functor to the derived is symmetric monoidal.
By definition, the unit of Stable, r) is compact. Moreover, the localisation (4.49) is pre-
cisely given by I'-localisation, i.e., inverting those maps that become isomorphisms after
tensoring with I'.

If E is a homotopy-associative ring spectrum, then we also write Stableg g for the stable
comodule co-category of the Hopf algebroid (E,, E.E).

Theorem 4.50. There is a right t-exact fully faithful left adjoint of monoidal co-categories
Modc+(Syng) — Stableg, g

with the following properties.

BBINote that this is a phenomenon that does not occur in D(Mod 4) or D(grMod , ) for a (graded) commut-
ative ring A, and is specific to the comodule setting.



4.3. Synthetic spectra as a deformation 110

(1) This functor sits in a commutative diagram of lax monoidal functors

Sp % Modc+(Syng)

E*(—)l j

grComod EE S Stableg, .

(2) If E is Landweber exact or is the sphere spectrum, then this functor is an equivalence.

(3) If E is homotopy commutative, then this functor is naturally symmetric monoidal, and the
diagram of (1) is naturally one of lax symmetric monoidal functors.

Proof. The main result and item (3) are [Pst22, Theorem 4.46]. Item (1) follows by combin-
ing this with Theorem 4.23 (e), and item (2) is [Pst22, Proposition 4.53]. |

In particular, the special fibre of synthetic spectra is entirely algebraic (except for possibly
the braiding if E is not homotopy commutative). The failure of the above functor to be
essentially surjective is the problem of Stableg, g not being generated by the objects E. P
where P ranges over the finite E-projective spectra. We regard this as a minor technical
issue.

Remark 4.51. We now have two different generalisations of E-homology for synthetic
spectra, namely vE-homology and Ct-homology. They both differ from E-homology for
ordinary spectra, but in different ways.

¢ For vE-homology, we obtain a second grading, and even a Z|7]-module structure.
Although the vE-homology of a synthetic analogue is very simple (having no
T-torsion for instance, see Example 4.66 below), the vE-homology of a general
synthetic spectrum can be a highly nontrivial Z|7]-module.

¢ For Ct-homology, this takes values in a (modification of) the derived co-category of
E.E-comodules. For a synthetic analogue, this lands in the heart, and by Proposi-
tion 4.47 is identified with E-homology in the ordinary sense. For a general synthetic
spectrum however, the resulting object will rarely be an honest E, E-comodule, but
will generally be a derived or stable one.

Remark 4.52. Strengthening Proposition 4.47, the essential image of v in fact consists
precisely of those synthetic spectra X that are connective and for which Ct ® X is discrete
in the homological t-structure; see [PV22, Proposition 2.16]. Using Theorem 4.50, we can
equivalently state this condition as asking Ct ® vX to be an honest comodule, rather than
a derived one.

Recall that the derived co-category is obtained from the stable comodule co-category
by localising at E,E-equivalences. Translated into synthetic terms, E.E corresponds to
vE /7, leading to the following. Moreover, note that the generation issues go away after
vE-localisation, and we obtain an actual equivalence.
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Theorem 4.53 ([Pst22], Theorem 4.54). The functor from Theorem 4.50 restricts to a monoidal
equivalence
L,g Modc(Syng) ~ D(grComod, ;)

which is naturally symmetric monoidal if E is homotopy commutative.

Notation 4.54. Following [Pst22], we will also write S/)BE for L,g Syng. In op. cit., objects
of S/y\nE are called hypercomplete, stemming from their definition as sheaves; we will not
use this name, and instead refer to them simply as vE-local objects. We warn the reader
that, while this notation is convenient when working with a fixed E, it could lead to
confusion when working with various E at once. In these notes, we will always work
with a fixed E, so this confusion should not arise.

Warning 4.55. For general E, the unit in S/y?lE is not compact for general E, because the
unit of D(grComod;, ;) is usually not compact. As a result, although S/y?lE is a symmetric
monoidal deformation in its own right (obtained by vE-localising the functor p), the
resulting right adjoint S/yBE — FilSp does not preserve colimits; see Theorem 3.88 (3).

At this point, we can begin to see the Adams spectral sequence appearing, at least its
second page.

Example 4.56. Let X and Y be spectra. Combining Proposition 4.47 and Theorem 4.53,
we learn that Ct-linear maps between synthetic analogues are computed by maps of
comodules:

[vY/t, vX/T]cr =2 Homg, g (E.Y, E.X).

For an integer k, let us denote the k-fold grading-shift functor on D(grComod ;) by [k],
and let us write =¥ for the k-fold co-categorical suspension as usual. By Proposition 4.47,
the synthetic spectra vY /T and vX /T are O-truncated, which by Theorem 4.23 (b) in partic-
ular means they are vE-local. Using Theorem 4.53 and the definition §™* = X7° v(S"*%),
it therefore follows that

n,s ~ s _ s, n+s
T — 7 . 7 .
2" vY/t, vX/Tlcr = [(EY)[n+5s], Z E*X]D(ngOmodE*E) = Extz/; (E.Y, E.X)
In particular, we have

Mus(vX/T) = [S™, vX /1] = [CT® 8", vX/T]cr = Exty';(E,, E.X). A

4.3.4 Synthetic lifts

Previously, we argued that the T-inversion of a synthetic spectrum can be thought of as
an ‘underlying spectrum’. We can also turn this question around, fixing a spectrum and
asking how many synthetic spectra have this as their underlying spectrum. It is useful to
introduce some terminology for this.

Definition 4.57. Let X be a spectrum. A synthetic lift of X is a synthetic spectrum S such
that ST~ = X.
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Example 4.58. Theorem 4.41 says that v provides a functorial synthetic lift. A

We think of a synthetic lift of a spectrum X as encoding a modified Adams spectral sequence
for X. The synthetic analogue of X, from this perspective, is the standard synthetic lift; as
we will see in Theorem 4.71, it encodes the ordinary Adams spectral sequence for X. For
a further discussion of these ideas, see [CD24].

We end this section by discussing how to construct synthetic lifts out of old ones. As
T-inversion preserves colimits, taking colimits results in a synthetic lift of the colimit
of the underlying spectra. More subtle is the use of limits, since T-inversion does not
preserve all limits. For instance, if S is a synthetic spectrum, then every term in its T-adic
tower

i — S/ —S/TP—S/T

vanishes upon t-inversion; meanwhile, the T-inversion of the limit is (S2)[t ], which
is nontrivial for many S (e.g., if S = vX for X an E-nilpotent complete spectrum, by
Theorem 4.71). Nevertheless, if the diagram is of a special form, then T-inversion does
preserve the limit.

Proposition 4.59. Let X: I — Sp be a diagram of spectra. Then we have an isomorphism
v(lim X) = to(limv(X)),
and the limit-comparison map
(limv (X)) — lim X

is an isomorphism of spectra. In particular, lim v(X) is a synthetic lift of lim X.

Because v is fully faithful, this in fact says that T-inversion preserves the limit of any
diagram that takes values in synthetic analogues.

The key input for the proof is the homological t-structure, particularly Remark 4.46 and
the following lemma.

Lemma 4.60 ([Pst22], Lemma 4.35). If S is a bounded above synthetic spectrum, then S|t~
is zero. In particular, if S is any synthetic spectrum, then for every n, the map t>,S — S becomes
an isomorphism upon T-inversion.

Proof. For every integer s, the suspension 0% decreases coconnectivity by s; this fol-
lows directly from the coconnectivity criterion of Theorem 4.23 (b). Since vE-homology
preserves filtered colimits, it follows that if S is bounded above, then the colimit

S[t7!] = colim( § —— %5 T ¥02g5 T ...,

is (—o0)-coconnective. Since the t-structure on Syn, is right complete by Theorem 4.23 (f),
it follows that S[t~!] vanishes.
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The final claim follows from the fact that the cofibre of 7>,S — S is T7<,—1S, which in
particular is bounded above, and that T-inversion is an exact functor. [ |

Proof of Proposition 4.59. Since v takes values in connective synthetic spectra, we may
consider v o X as landing in (Syn;)>o. By Remark 4.46, the functor v: Sp — (Syn;)>o is
right adjoint to T-inversion, implying that v sends limits of spectra to limits in (Synj)>o.
A limit in the connective subcategory is computed as the connective cover of the limit in
Syng, so we find that

v(lim X) = o (limv(X)).

As T-inversion is left inverse to v, it follows that the right-hand side T-inverts to lim X.
The claim now follows from Lemma 4.60. n

4.4 The signature of a synthetic analogue

Previously in Section 2.5.2, we defined a (cosimplicial) model for the Adams spectral
sequence, resulting in a functor Sp — FilSp. The better and more modern definition is
the following.

Definition 4.61. The E-based Adams filtration is the functor ¢ o vg: Sp — FilSp.

The goal of this section is to give a justification for this name: in Theorem 4.71, we
show that this spectral sequence agrees with the décalage of the E-based Adams spectral
sequence as defined in Definition 2.81. (For an explanation why the décalage appears,
see Variant 2.82 and the discussion preceding it.) However, as we pointed out before,
the point of this is not to let go of the synthetic origins of this functor, but rather to
demonstrate that this recovers the correct notion.

One concrete reason for preferring this definition over the old one is the following.

Remark 4.62 (Lax monoidality; [PP23], Section 5.5). The functor ¢ o vg is a composite of
two lax symmetric monoidal functors, making it a lax symmetric monoidal functor. This
only requires E to be homotopy-associative. By contrast, to turn the classical definition
of the E-Adams filtration into a lax symmetric monoidal functor, one would need an
E-structure on E. Such a structure does not always exist in cases of interest (e.g., BP or
Morava K-theories), and the Adams spectral sequence does not depend on it, so it is not
desirable to require these structures. For a further discussion, and a way to construct this
for E having only a left-unital multiplication, see [PP23, Section 5.5].

Our proof strategy is to first show this comparison on resolution objects, which for the
E-Adams spectral sequence are the homotopy E-modules. This relies on a computation
of the synthetic homotopy groups of E-modules. The general case follows from this by
descending from a resolution by such objects.

Remark 4.63 (History). Theorem 4.71 is not new and is well-known to experts, but has not
been written down in this specific form. In [PP23, Proposition 5.56 and Theorem 5.60],
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Patchkoria and Pstragowski prove this result for the synthetic-like categories they con-
struct therein; while formally these categories are different, the proofs follow the same
ideas. Another closely-related result is [Pst25, Theorem 6.26], whose proof we follow
closely in this section. Similar results in the nilpotent-complete case can be found in
[Pst22, Remark 4.64] and [BHS23, Appendix A.1]. A proof of the nilpotent-complete case
also appeared in [CDvIN25, Section 1.4], which this section is an adaptation of.

The following holds for homotopy classes of maps Y — X between two spectra, but for
simplicity we record it only for homotopy groups. In words, it says that the spectral se-
quence underlying vX is concentrated in nonnegative filtrations, and that the underlying
spectrum of the filtration o (vX) is given by X.

Proposition 4.64 ([Pst22], Theorem 4.58). Let X be a spectrum. Then for all s < 0 and all n,
inverting T induces a natural isomorphism

7,s(VX) = mX.
Phrased differently: inverting T induces a natural isomorphism of bigraded Z|t]-modules
7, <o(vX) = . (X)[1],

where 11, X is placed in bidegree (n,0).
For the didactic value, we include Pstragowski’s proof.

Proof. The cofibre sequence

vX —S 5 y0lyx 5 yOlyXx /1

gives rise to a long exact sequence on bigraded homotopy groups; by Example 4.56, part
of this reads

Exty 7" N(Ey, EuX) — mus(vX) 5 -1 (vX) — Exty "7 (E,, ElX).

Note that Extfgi £(Es, ExX) = 0 whenever s < 0. Therefore if s < 0, we see that the two
outer terms vanish, so that the map in the middle is an isomorphism. As a result, to prove
the claim, we only have to show that T-inversion induces an isomorphism

To(vX) = [vS", vX] — [S", X] = m,. X.

This follows from the fact that T-inversion is a left inverse to v (see Theorem 4.41) and
that v is fully faithful. [ ]

For a particularly nice class of spectra, this computes the entirety of their synthetic
homotopy groups.
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Proposition 4.65 ([Pst22], Proposition 4.60). Let M be a spectrum admitting a homotopy
E-module structure. Then inverting T induces a natural isomorphism of bigraded Z[t|-modules

T, (VM) — 1, (M)][1],
where 11, M is placed in bidegree (n,0).

In words, this says that the signature spectral sequence for vM is concentrated in filtration
zero, and as a result collapses without any differentials. Again we include Pstragowski’s
proof.

Proof. Using the previous result, we only have to show that 7, s(vM) vanishes when
s > 1. We first show this for s = 1. Since M is a homotopy E-module, the Hurewicz
homomorphism

E.(—): myM — Homg, g(E.[n], E.M)

is an isomorphism; see [Pst22, Remark 3.18]. Under the isomorphism 77, M == 71, 0 (vM),
the Hurewicz homomorphism is the right-most map in the exact sequence

Extg 't"(Es, EsM) —— my1(vM) —— m,0(vM) —— Ext¥'+(E,, E.M).

As the Ext group on the left vanishes, we learn that 7, 1 (vM) = 0 for all n.

Next, we consider the case s > 1. Since M is a homotopy E-module, it follows from [Pst22,
Remark 3.18] that we have an isomorphism of graded comodules

E.M ~ E.E®¢ M,,

implying that
Exty p(E., E.M) = Ext} (E,, M.).

In particular, we see that these Ext groups vanish whenever s > 1. By the long exact
sequence, this means that multiplication by T induces an isomorphism

T: 7y, 541 (VX) =N s (VX)
for all s > 1. We previously showed that 77, 1 (vM) = 0, so we are done. [ |

Example 4.66. Recall from Example 4.10 that for all spectra X, we have an isomorphism
VE®vX = v(E ® X). Because E ® X is a homotopy E-module, we learn from Proposi-
tion 4.65 that

VE, . (vX) = mo . (VE®vX) = 7., (v(E ® X)) = E.(X)[1].

In particular, by Theorem 4.23 (a), this shows that vX is connective in the homological
t-structure. We now see why this is independent of the connectivity of the spectrum X: the
connectivity of vX is about the collapse of the E-Adams spectral sequence for 77, (E ® X).

We learn a number of things from this computation.
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(1) The shift 2% vX for s # 0 is not in the essential image of v (unless E.(X) vanishes).

(2) The Z[t]-module vE, .(vX) is T-torsion free. As a result, we learn that
VE,«(CT® X) = (VE,«(vX))/T = E«(X),

where we mean the quotient by 7 in the (non-derived) algebraic sense. This ex-
plains (apart from the vE-locality) why Ct ® vX is O-truncated in the homological
t-structure; cf. Theorem 4.23 (b).

(3) Inverting T on vE, .(vX) yields
VE, (£ X) = VE..(vX[t7Y]) & E.(X)[t%].

This gives an indication of why vX — X X is a connective cover, and more generally,
why the Whitehead tower of XX

= 1 (EX) — (X)) — 1 (KX) — -

can be identified with the multiplication-by-T tower on vX

. T 20,71 VX T 1/){ T 20,1 VX T e A

We can restate Proposition 4.65 in terms of the signature of v M.

Corollary 4.67. Let M be a spectrum admitting a homotopy E-module structure. Then there is a
natural isomorphism of filtered spectra

c(vM) =2 WhM
which is naturally a symmetric monoidal natural transformation in M.

Proof. Because o preserves T-inversion by Proposition 4.31, we find that for any spectrum
X, applying ¢ to the T-inversion map vX — vX[t !] results in a natural (symmetric
monoidal) transformation

c(vX) — o(vX)[t!] = Const X, (4.68)

where we use the identification from Proposition 4.44. If now M is a homotopy E-module
spectrum, then Proposition 4.65 implies that o(vM) is connective in the diagonal t-
structure on filtered spectra. Indeed, combining Proposition 4.65 with Proposition 4.34 (2),
we see that the group

Tns(0(VM)) = 711 s—n (VM)

vanishes whenever s — n > 0, that is, whenever n < s. As a result, the natural map (4.68)
in the case X = M factors through a natural map

c(vM) — T;ioag(Const M) = Wh M.
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Moreover, this factorisation is through a symmetric monoidal transformation, because
the diagonal t-structure on filtered spectra is monoidal (Proposition 2.23 (g)). To establish
that it is an isomorphism, it suffices to show that each component o(vM)* — 7> M is
an isomorphism for all s. As this map is induced by T-inversion, this is the other part of
Proposition 4.65. n

Although it follows directly from Proposition 4.65 that the signature spectral sequence of
vM converges to M, a more refined argument even shows that vM is T-complete in Syn,
itself. (If Syn is not cellular, then this is not automatic from completeness of c(vM).)

Corollary 4.69 (IBHS23], Lemma A.15). Let M be a spectrum admitting a homotopy E-module
structure. Then vM is T-complete.

Again for didactic value, we include the proof given by Burklund-Hahn-Senger.

Proof. We have to show that the limit (as s — o) of

e sy ¥y s I YNy M s uM

vanishes. It is enough to check this on mapping spectra out of vP for all finite E-projective
spectra P. As vP is dualisable with dual v(P") by Proposition 4.8 (3), we find that

map(vP, lim =% vM) = lim map (S, v(P¥) ® vM) = lim map(S%, v(P¥ ® M)),
S S S

where for the latter isomorphism we use Proposition 4.9 (3). The n-th homotopy group of
the mapping spectrum at stage s on the right-hand side is given by

Ttn,s—n(V(PY @ M)).

Because PV ® M admits a homotopy E-module structure (since M does), these groups
vanish when n < s by Proposition 4.65. It follows that this mapping spectrum is s-
connective, so that the limit over s is co-connective, and therefore vanishes. [ |

We are now ready to show that the spectral sequence underlying c(vX) is the E-based
Adams spectral sequence for general X, or more precisely, that it captures its décalage.
To show this, we may choose any preferred E-resolution of X to compute the E-based
Adams spectral sequence; we use the one from Definition 2.81.

Construction 4.70. Since E is a homotopy ring spectrum, its unit map S — E gives rise
to a semicosimplicial spectrum E!*l Ainj — Sp which receives a map from S. Tensoring
this resulting diagram with a spectrum X, we obtain a diagram of spectra

X — EMeX.
Applying o o v to this diagram, we obtain a diagram of filtered spectra

oc(vX) — o(v(E @ X)).
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Note that for every n > 1, the spectrum E®" ® X has the structure of a homotopy E-
module. By Corollary 4.67, it follows that c(v(E®" ® X)) = Wh(E®" ® X). As such, the
above diagram induces a map

o(vX) — Tot(Wh(E!" ® X)) = Déc™(El*) ® X).

The target of this map is Déc(ASSg(X)), as follows by combining Proposition 2.77
and Definition 2.81.
Theorem 4.71. Let X be any spectrum.

(1) The spectrum X is E-nilpotent complete if and only if vX is T-complete.

(2) The natural comparison map from Construction 4.70
o(vX) — Déc(ASSg(X))

is completion (a.k.a. T-completion) of filtered spectra, i.e., it is an isomorphism on associated
graded and the target is complete (a.k.a. T-complete).

(3) The above comparison map is an isomorphism of filtered spectra if X is E-nilpotent complete.
If Syng is cellular, then the converse is true, i.e., it is an isomorphism if and only if X is
E-nilpotent complete.

Proof. Because o preserves limits, the map from Construction 4.70 is obtained by applying
o to the natural map
vX — Tot(v(E* @ X)). (4.72)

We begin by showing that this map is T-completion, i.e., that it is an isomorphism after
tensoring with Ct and that the target is T-complete. By Corollary 4.69, the target is a
limit of T-complete objects, and is therefore T-complete. Because CT is finite, tensoring
with it preserves limits, so we find that tensoring (4.72) with Ct results in a map in
D(grComod ) € Modc:(Syng) of the form

E.X — Tot((E.E)®"* @ E.X),

where the tensor products are over E.. As E.E is flat, we may take these tensor products
to be underived. This map is an isomorphism in D(grComod; ), because for any
M € grComod r, the cobar complex

(E.E)®*l @ M

constitutes a cosimplicial resolution of M by relative injectives, so that the map from M
into its totalisation is a quasi-isomorphism. We conclude that (4.72) is indeed T-completion
in Syn,.

Next, if we invert T on (4.72), then by Proposition 4.59 we obtain the map of spectra

X — Tot(El* @ X).
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This map is, by definition, an isomorphism if and only if X is E-nilpotent complete.
Because any map of synthetic spectra is an isomorphism if and only if it so after inverting
T and after quotienting by T (see Proposition 3.79), we find that (4.72) is an isomorphism
if and only if X is E-nilpotent complete. As (4.72) is T-completion, this proves item (1).

Item (2) follows immediately from the fact that o preserves T-completion; see The-
orem 3.88 (2). If X is E-nilpotent complete, then (4.72) is an isomorphism, and hence so
is the map from Construction 4.70. Finally, cellularity of Syn, is equivalent to ¢ being
conservative (Proposition 4.31), thereby showing the final claim of item (3). [ |

Remark 4.73. The reason why completion appears in the comparison between o (vX) and
the Adams filtration is due to our use of cosimplicial objects in defining the latter. Note
that the colimit of the filtration o (vX) is always naturally isomorphic to X, but that this
filtration may not be complete. On the other hand, the cosimplicial definition of ASSg(X)
is always a complete filtration, but its colimit may not be X. These convergence problems
are in fact the same, since the natural map from the former to the (décalage of the) latter
is completion. We expect that o (vX) is isomorphic, as a filtered spectrum, to the décalage
of a filtered Adams resolution of X (see Remark 2.85), so that Remark 2.85 would also
explain this difference in packaging of the convergence problem. (On the other hand,
incorporating monoidal structures as in the next remark would require working from the
second page onward, for reasons explained by Remark 2.79.)

Remark 4.74 (Monoidal version). The left-hand side of the comparison map of Construc-
tion 4.70 is naturally a lax symmetric monoidal functor in X; see Remark 4.62. Recall from
Remark 2.74 that Déc” is naturally lax symmetric monoidal. If E carries considerably
more structure, then we can give the functor X — El*l ® X a lax symmetric monoidal
structure as well, in which case the comparison map

o(vX) — Déc®(E* @ X)
of Construction 4.70 matches up these monoidal structures, as follows.

o If E carries an E;-structure, then the semicosimplicial spectrum E*) naturally ex-
tends to a cosimplicial spectrum A — Sp; see [MNN17, Construction 2.7]. If E
carries an E,-structure for 1 < n < oo, then using Dunn additivity, this construction
turns E[*l into a cosimplicial E,,_-ring.

+ Consequently, if E is E,, for 1 < n < oo, then the functor
Sp — Sp®, X— Ef@X
is naturally a lax E,,_i-monoidal functor. Postcomposing with the lax symmetric
monoidal functor Déc?®, we obtain a lax E,_;-monoidal functor
Sp — FilSp, X — Déc®(El @ X).

In this case, the comparison map of Construction 4.70 is an E,_;-monoidal natural
transformation.
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Said differently, by completing the filtered spectrum o (vg(—)), through Theorem 4.71
we obtain a lax symmetric monoidal structure structure on Déc(ASSg(—)), even if E is
merely homotopy-associative. Only when E is E, can we identify this structure concretely
in terms of E; in general, we have to work at the level of synthetic spectra.

Remark 4.75. A slightly different way of showing that vX is T-complete if and only if X is
E-nilpotent complete is given by [BHS23, Proposition A.13]. They also show that this is
equivalent to vX being vE-nilpotent complete. Note that this also follows from our proof:
using Example 4.10, we see that (4.72) is precisely the vE-nilpotent completion of vX.

Remark 4.76. One could try to run the same argument for the Adams spectral sequence
for maps [Y, X]|. for a general spectrum Y. Due to the nature of the definition of Syn; as
in [Pst22], this is only sensible when Y is a filtered colimit of finite E-projective spectra.
(The above proof breaks down in general because when taking (4.72) mod 7, we obtain a
resolution only by relative injectives. This is also related to Syn, being generated by the
synthetic analogues of finite E-projectives; see Proposition 4.8 (4).) If 7. E is a graded field,
then this condition on Y is vacuous, but not in general. To obtain the Adams spectral
sequence for general E and Y, one has to work with a different version of synthetic
spectra, as in the work by Patchkoria—Pstragowski [PP23]. In Theorem 5.60 of op. cit.,
when working in this different version, they identify the spectral sequence underlying
the filtered mapping spectrum (see Construction 3.81) from vY to vX with the Adams
spectral sequence for [Y, X]..

4.5 The synthetic Omnibus Theorem

Previously in Section 4.3, we explained how the filtered Omnibus Theorem 3.62, as well
as its truncated variants of Theorems 3.67 and 3.70, directly imply a synthetic version, up
to a reindexing. For the convenience of the reader, we state this synthetic version here.
We leave the analogous re-indexing of the truncated versions to the reader, or refer to
[CDvIN24, Theorems 2.21 and 2.28] for a recorded version.

Theorem 4.77 (Synthetic Omnibus). Let X be a T-complete synthetic spectrum, and assume
that in its signature spectral sequence, we have RE;" = 0 (for instance, this happens if the spectral
sequence converges strongly). Let x € E}*° = 71, s(X/T) be a nonzero class. Then the following
are equivalent.

(la) The element x is a permanent cycle.
(1b) The element x € 71,,,5(X/T) lifts to an element of 77,5 X.
For any such lift « to 11, s X, the following are true.

r—2

(2a) If x survives to page r, then T"~* - w is nonzero.

(2b) If x survives to page oo, then a maps to a nonzero element in 77, X*=", and this element is
detected by x.
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Moreover, if x lifts to X, then there exists a lift a with either of the following additional properties.
(3a) If x is the target of a d,~differential, then T"~1 - a = 0.
(3b) If0 € 71, X"~ is detected by x, then a is sent to 6 under 7, s X — 71, X7 L.

Finally, we have the following generation statement.

(4) Let { a; } be a collection of elements of 71, X such that their mod T reductions generate the
permanent cycles in stem n. Then the T-adic completion of the Z|t|-submodule of 71, « X
generated by the { a; } is equal to 77, . X.

Proof. This follows by combining Theorem 3.62 with Proposition 4.34 and Theorem 3.88.
[ |

If the synthetic spectrum X in Theorem 4.77 is the synthetic analogue of a spectrum Y,
then Theorem 4.71 tells us that the signature of vY is the E-Adams spectral sequence for
Y. Moreover, in this case the convergence condition is precisely asking for the Adams
spectral sequence for Y to be strongly convergent. (Indeed, because this filtration is
left-concentrated in the sense of Definition 2.50, this follows from Theorem 2.52.) In
this way, the filtered Omnibus Theorem together with the computation of ¢ o v recov-
ers the Omnibus Theorem for synthetic analogues of Burklund-Hahn-Senger [BHS23,
Theorem 9.19].

This combination of Theorems 4.71 and 4.77 lets information flow both ways. On the
one hand, we now see that if we use synthetic spectra to compute the homotopy of a
synthetic analogue, this gives us new information about the underlying Adams spectral
sequence. On the other hand, we can also use this to import existing knowledge about
Adams spectral sequence into synthetic spectra, thereby giving us a starting point for
new computations.

Remark 4.78 (Comparison of proofs). Our proof of the Omnibus Theorem is inspired
by the one of Burklund—-Hahn-Senger in [BHS23, Appendix A]. They identify the vE-
Adams spectral sequence of vX with (to use our terminology) the 7-BSS for the E-ASS
of X; see Theorem A.8 of op. cit. for the precise meaning of this.[*! Generalising this to
an arbitrary synthetic spectrum requires finding suitable replacements for these three
spectral sequences. In our approach, we view the signature spectral sequence as the
appropriate replacement for the E-ASS, and we do away with the the vE-ASS, going
straight to the T-BSS of the signature spectral sequence. As the signature spectral sequence
is defined using filtered spectra, the proof naturally takes place there, so that the synthetic
version is a special case of the filtered version of Section 3.5. The computation of o o v is
then the result that gives this a concrete meaning.

As a consequence of Theorem 4.71, we learn that the strict filtration on 7, X induced by

[4INote that they use second-page indexing, which can be obtained from ours using Remark 3.55. See also
Variant 4.39.
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7Ty« VX coincides with the E-Adams filtration, recovering [BHS23, Corollary 9.21]. See
Definition 2.96 for the definition of the (algebraic) Adams filtration.

Corollary 4.79 (Geometric Adams filtration). Let X be a spectrum, and let n be an integer.
Let f: 8" — X be a map, and let s > 0. Then f has (algebraic) E-Adams filtration (see
Definition 2.96) at least s if and only if there exists a factorisation

vsn =m0 Y x

T
T”l -

ZO’S vSH = §ns

In other words, f is of (algebraic) E-Adams filtration at least s if and only if vf is divisible by T°.

In particular, the (algebraic) E-Adams filtration on 71, X coincides with

F nnX:im< [sms, vX] =L [S", X] )

Proof. Combine Propositions 2.97 and 2.99 with Theorem 4.71. u

Phrased differently, the functor v sends a map f: §" — X of spectra to the map vf, which
we think of as f placed in Adams filtration 0. Then a T°-division of vf (should it exist) is
a witness that f has Adam:s filtration at least s.

More generally, the analogous result holds when S”" is replaced by a spectrum Y that can
be written as a filtered colimit of finite E-projective spectra. For a general spectrum Y, one
has to work with the different construction of synthetic spectra from [PP23], as explained
in Remark 4.76; the general result in this case is [PP23, Theorem 5.60 (2)].

Notation 4.80. If Y is a spectrum and « € 7, Y is an element, then there are two
conventions one can take for naming elements of 77, . VY.

(1) One could denote v(«) € 7,0 VY by the same symbol a again, and write & for (a
choice of) the maximal 7-division thereof. This is the convention used by Burklund—
Hahn-Senger in [BHS23].

(2) One could denote (a choice of) the maximal t-division of v(«a) by the same symbol
«. This is used, e.g., by Burklund in [Bur21].

The second convention is the one we will use. Conceptually, it emphasises the Adams
filtration of an element in 77, Y as an intrinsic invariant, so that we should be thinking of
its maximal T-division as its ‘true origin’.

Remark 4.81 (Uniqueness). Note that the maximal 7-division of v(«) may not be uniquely
defined, as 71, « vY might contain T-power torsion. Specifically, if « has filtration s, then
the maximal 7-division of v(«) is defined up to T°-power torsion in 71, vY. Via the
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Omnibus Theorem (if the convergence conditions are met), this is more or less saying
that it is defined up to permanent cycles in filtrations k > s that are hit by a differential of
length < k —1.

Example 4.82. Consider the 1-stem of the MU-synthetic sphere. In the ordinary sphere,
the element 17 € 711 S has Adams—Novikov filtration 1. Translated in synthetic terms, we
have 7113 Ct = 0 for s # 1, and 7111 C7 is isomorphic to Z/2 with generator hy. Since
the 1-stem does not receive or support any differentials (for degree reasons), it follows
from Corollary 3.64 that 771 . S is T-power torsion free. It follows that T-inversion is an
injection, and as 711 S = Z/2 - 57, we obtain an isomorphism

m«S=Z/2[1] - x,
where x is in bidegree (1,1), where x maps to hp under mod 7 reduction, and where T - x
is the synthetic analogue of the map 77 € 711 S.
The second convention above would be to use the symbol # to denote the generator x. A

As an another example, in Example 3.12, we studied essentially 77,5 S of the (2-local)
MU-synthetic sphere for n < 3, and also followed the second notational convention
mentioned above.



Chapter 5

Variants of synthetic spectra

In this chapter, we discuss certain variants and modifications of synthetic spectra. The
first main result is that, under a mild condition, the co-category of synthetic spectra is
equivalent to modules in FilSp over a filtered ring spectrum; see Section 5.2. The second
is that MU-synthetic spectra are equivalent to (a small subcategory of) C-motivic spectra;
see Section 5.4. The first of these results requires a discussion of cellularity, and the second
requires a discussion of evenness; these are discussed in Section 5.1 and Section 5.3,
respectively.

Most of the results in this section are not new, but are presented slightly differently
compared to the literature. In particular, our discussion of filtered models is once again
focussed on the signature adjunction. One minor new result is that our discussion of
evenness shows that even synthetic spectra are closed under limits (Corollary 5.35), but
our approach has the downside of only applying to the cellular case. Our discussion
of the relation to motivic spectra is no more than a quick review, and will not be used
heavily.

5.1 Cellularity

Definition 5.1. Let C be a monoidal deformation. The cellular subcategory C!! of C is
the smallest subcategory closed under colimits that contains p(S™*) for all n and s. We
say that C is cellular if C*!' = C.

Remark 5.2. A different way of stating the definition of cellularity is that the object 1¢ of C
generates C as a FilSp-linear category under colimits. Phrased in this way, the definition
can be extended to a general deformation, where one has to provide a choice of an object
to play the role of 1¢. In this case, one might speak of the deformation being a monogenic
FilSp-linear co-category.

Proposition 5.3. Let C be a monoidal deformation.

(1) The co-category C!' is a presentable stable co-category.

124
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(2) The subcategory C<!! C C is closed under colimits and tensor products.

Consequently, C<! inherits the structure of a presentably monoidal co-category from C, and we
have a colocalisation adjunction
1l e—-:
Cce (7)cell C

with a monoidal left adjoint. If C is a symmetric monoidal deformation, then C*! is a symmetric
monoidal subcategory and the inclusion is a symmetric monoidal functor.

Proof. Presentability follows because it is generated under small colimits by a small set
of objects. Closure under colimits is clear, and closure under tensor products follows
because the tensor product of C preserves colimits in each variable separately. The Adjoint
Functor Theorem then yields the desired adjunction. n

We refer to the right adjoint C — C*®!! as the cellularisation functor, which is canonically
lax monoidal (symmetric if C is a symmetric deformation). It follows from this adjunction
that for every X € C, the counit xeell 5 X induces an isomorphism

s X 22 7, (X,

In this sense, one may think of the passage from C to C®"" as similar to the passage
from topological spaces up to homotopy equivalence, to topological spaces up to weak
homotopy equivalence.

This is also indicative of a larger phenomenon: when using a deformation to study the
resulting signature spectral sequences, we may as well work with its cellularisation.

Proposition 5.4. Let C be a (symmetric) monoidal deformation.
(1) The functor o is conservative if and only if C is cellular.

(2) We have natural commutative diagrams of lax (symmetric) monoidal functors

ceell C FﬂSp .
(—

[
V \ ) and )& /
P

Ccell

FilSp

(3) The adjunction p | o restricts to an adjunction between FilSp and C®!!, which we denote
by

cell
FilSp —— ceell,
(%
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Proof. The first claim is a restatement of Theorem 3.88 (4). The functor p lands in C®!! be-
cause it preserves colimits and because FilSp is generated under colimits by the bigraded
spheres. To see that o factors over cellularisation, we have to show that ¢ sends the counit
Xeell — X to an isomorphism for every X € C. By adjunction, this follows from p landing
in the cellular subcategory. The final claim follows immediately from this. n

Proposition 5.5. Let C be a monoidal deformation. Then C is cellular if and only if the generic
fibre of C is generated under colimits by p(S™ [t ~1]) for n € Z and the special fibre is generated
under colimits by p(Ct ® S™°) for n,s € Z.

Proof. The deformation C is cellular if and only if the counit X' — X is an isomorphism
for all X € C. We may check whether this map is an isomorphism after inverting and after
modding out by 7; see Proposition 3.79. One checks that the cellularisation adjunction
reduces to the analogous adjunction for generation by the T-invertible or the mod t
bigraded spheres, respectively. Since the filtered spheres S and S™! become isomorphic
upon T-inversion, the case of the generic fibre reduces to the stated claim. n

Next, we turn to the case of synthetic spectra. To the author’s knowledge, it is not known
if for every E of Adams type, the deformation Syn; is cellular. It is known to hold in
many cases. In the case E = F), it is relatively easy to see that it is cellular; see [CD24,
Lemma 2.3]. Pstragowski proved in his foundational work that MU-synthetic spectra are
cellular; see [Pst22, Theorem 6.2]. Later, Lawson generalised this to arbitrary connective
E.

Theorem 5.6 (Lawson [Law24b]). Let E be a homotopy-associative ring spectrum of Adams
type. If E is connective, then Syng is cellular.

In joint work with Barkan, we prove cellularity in an important nonconnective case.

Theorem 5.7 (IBVN25]). Let E be a Morava E-theory at an arbitrary height and prime. Then
Syn; is cellular.

Note that Theorem 5.6 does not imply Theorem 5.7. Indeed, if E denotes Morava E-theory,
then (except at height 0) we have that F;, is E-acyclic for all p, while if R is a connective
homotopy-ring spectrum, then there is at least one p for which F, is not R-acyclic. It
follows that Syn, is not equivalent to Syn, for any connective homotopy-ring spectrum
R.

5.2 Filtered models

Under certain conditions, there is a description of Syn, as modules in FilSp over a certain
filtered ring spectrum. These results have appeared before [BHS22, Appendix C] [Law24b]
[Pst25, Sections 3.3 and 3.5]. We include a discussion here to highlights its connection to
the signature adjunction. We learned this approach from Shaul Barkan. See also [BHS22,
Appendix A].
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Theorem 5.8. Let C be a monoidal deformation. Suppose that C satisfies the following conditions.
(a) The monoidal unit 1¢ of C is compact.
(b) The deformation C is cellular.
Then the adjunction
FilSp # C

is a monadic adjunction that identifies the co-category underlying C with Mod,,(,. (FilSp). If C
is a symmetric monoidal deformation, then o (1¢) is a filtered Eco-ring, and the identification of C
with Mod (4, (FilSp) is naturally one of symmetric monoidal co-categories.

Proof. Itis enough to check the three conditions of [MNN17, Proposition 5.29]. The second,
that o preserves colimits, follows from Theorem 3.88 (3). The first, that the adjunction
satisfies the projection formula, follows from ¢ preserving colimits and Lemma 3.87.
Finally, the third condition, that ¢ is conservative, follows from Theorem 3.88 (4). [ |

Remark 5.9. Alternatively, as explained by Pstragowski, the hypotheses on C can be
interpreted as saying that it has a single compact filtered generator, so that a filtered
version of Schwede-Shipley applies; see [Pst22, Proposition 3.16].

Specialising to the synthetic setting, we immediately obtain the following.

Corollary 5.10. Let E be a homotopy-associative ring spectrum of Adams type. Then the
adjunction

cell
FilSp & Syn$!
oreell
is a monadic adjunction that identifies Synfseu with Mod,,(,s) (FilSp) as a symmetric monoidal

oo-category. Under this equivalence, the T-completion of (vX)®!! (where X is a spectrum) is sent
to Tot(Wh(E* © X)).

Proof. This follows by combining Theorem 5.8 and Theorem 4.71. n

Note, however, that this does not yet give an alternative description of Syn; (even after
forgetting the monoidal structure): we have not yet identified the filtered spectrum o (vS)
as a filtered E;-ring (let alone as a filtered E.-ring) without reference to Syn,. We can
do this using Theorem 4.71, but only when E is sufficiently structured; see Remark 4.74.
However, this result only identifies the completion of o(vS); by the same theorem, o (vS)
is complete if and only if S is E-nilpotent complete.

The prime example of such a setting is E = MU, which is an Ew-ring, and the sphere
is MU-nilpotent complete (see Example 2.106). As mentioned before, Syn,, is cellular,
resulting in the following.
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Corollary 5.11. There is a symmetric monoidal equivalence

Synyy = Mod gy mut+)) (FilSp)

under which o becomes the forgetful functor (as a lax symmetric monoidal functor). Moreover,
on MU-nilpotent complete spectra, the functor v is identified with the functor sending X to
Tot(Wh(MU!* @ X)) (as a lax symmetric monoidal functor).

Remark 5.12 ([BHS22], Appendix C). Because we can identify the T-completion of o (vS)
by Theorem 4.71, we can ignore the nilpotent-completeness issues by passing to a slight
modification of synthetic spectra. Namely, if E is an E;-ring of Adams type, then the
functor ¢ also induces an equivalence

Mod s, (Synf™) — Mody iz (FilSP),

which is symmetric monoidal if E is an Ee-ring. This follows by applying Theorem 5.8
to the symmetric monoidal deformation Mod,s), (Syng) and using that ¢ preserves
T-completion (Theorem 3.88 (2)). This is the formulation of the result given by Burklund-
Hahn-Senger in [BHS22, Proposition C.22]. (Of course, the same reasoning holds in the
context of Theorem 5.8, yielding a filtered model for modules over the T-completion of
the unit of C.)

A more elementary but curious-looking example is the case where E = S. In this case, all
nilpotent completeness conditions become vacuous, and we learn the following.

Corollary 5.13. There is a symmetric monoidal equivalence
Syng ~ Modwp s (FilSp)

under which o becomes the forgetful functor and under which v becomes the Whitehead filtration
functor (and these identifications are as lax symmetric monoidal functors), and under which the
homological t-structure is identified with the diagonal t-structure.

One can check that for every Adams type E, the functor ¢: Syn, — FilSp factors through
modules over Wh S, so that this is in a sense the minimal structure present on E-synthetic
spectra as E varies.

5.3 Evenness

The goal of this section is to discuss even synthetic spectra introduced in [Pst22, Section 5.2],
also studied in a slightly different form in [Pst25]. For spectral sequences, evenness is
nothing more than the condition that the starting page is concentrated in certain even
degrees (where the specific meaning of this depends on the indexing system being used).
On the synthetic side, even objects turn out to have geometric interpretations: the special
fibre of even MU-synthetic is the derived co-category of quasi-coherent sheaves over My,
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see Example 5.37. Moreover, in the next section, we will see that even MU-synthetic
spectra can be viewed as motivic spectra.

We will reinterpret the notion of evenness defined by Pstragowski through the language
of deformations. Accordingly, we begin by discussing this in the setting of filtered spectra.

5.3.1 Even filtered spectra
We remind the reader that we use first-page indexing on filtered spectra.
Lemma 5.14. Let X be a filtered spectrum. Then the following conditions are equivalent.

(a) For every s, the transition map
XZS SN XZSfl

is an isomorphism. In other words, for every n and s, the map
T: TTn,2s X ? Tln,2s—1 X

is an isomorphism.

(b) For every odd integer s, the associated graded spectrum Gr® X vanishes. In other words, the
homotopy groups 11, s(X /T) vanish whenever s is odd.

(c) The filtered spectrum X belongs to the smallest subcategory of FilSp generated under
colimits by the filtered spheres S™2° for all n and s.

Proof. By exactness, it follows that (a) is equivalent to (b). We prove that (a) is equivalent
to (c). Write FilSp®¥ for the full subcategory of those filtered spectra X satisfying (a), and
write C for the full subcategory of FilSp generated by S™2 for all n and s. Clearly FilSp®
is closed under colimits, so it follows that C C FilSp®’. To prove the other inclusion,
by [Yan22, Corollary 2.5], it is enough to show that the functors 71,25 jointly detect
isomorphisms on FilSp®'. This follows from the fact that the functors 7, s jointly detect
isomorphisms on FilSp, and that when restricted to FilSp®’, the functors 71, »s and 77, 251
are naturally isomorphic (induced by 7). ]

Definition 5.15. We say that a filtered spectrum is even if it satisfies the equivalent
conditions of Lemma 5.14. We write FilSp®” for the full subcategory of FilSp on the even
filtered spectra.

Evenness is a notion that is detectable on the spectral sequence: in first-page indexing on
filtered spectra, it says that the first page vanishes in odd filtrations.

Example 5.16.

(1) A filtered sphere " is even if and only if s is even. We may refer to a sphere of this
form as an even filtered sphere; note that this places no restrictions on the variable 7.



5.3. Evenness 130

(2) Let X be a spectrum. Then its Whitehead filtration Wh X is even if and only if 77, X
is concentrated in even degrees, and likewise for Post X. A

Proposition 5.17.
(1) The co-category FilSp®” is a presentable stable co-category.
(2) The subcategory FilSp® C FilSp is closed under limits, colimits, and tensor products.

Consequently, FilSp® inherits a presentably symmetric monoidal structure from FilSp, and the
inclusion functor admits both a left and a right adjoint and is a symmetric monoidal functor.

Proof. Presentability follows from characterisation (c) of Lemma 5.14. Closure under
limits and colimits follows from characterisation (a), which in particular implies it is a
stable subcategory. Closure under tensor products follows from characterisation (b), using
that Gr: FilSp — grSp is symmetric monoidal (see Remark 3.26), and that grSp®’ C grSp
is obviously closed under tensor products. The inclusion admits a right adjoint because
it preserves colimits. Because the even filtered spheres are compact, the inclusion also
preserves compact objects, and hence admits a left adjoint. n

Remark 5.18. One may check that the left adjoint to the inclusion FilSp®” C FilSp sends a
filtered spectrum X to

e X ==X — X ==X — X3 — ...

with X~ in filtrations 0 and —1, and the right adjoint sends X to

e X=X — X ==X — X = ..

with X? in filtrations 0 and —1.

Remark 5.19. There is a symmetric monoidal equivalence p: FilSp® — FilSp that
‘pinches’ the transition maps together: it sends an even filtered spectrum X to

X2 X0 X2 — .

For instance, this sends $™% to S™. Formally, precomposition with 2: Z°%° — Z°P
results in a symmetric monoidal functor FilSp — FilSp. Restricting the domain to the
even subcategory results in the claimed symmetic monoidal equivalence p. Indeed, this
restricted functor has a two-sided inverse given by d*, where d: Z°P — Z°P is the map of
posets that sends 2s and 2s — 1 to s.

Remark 5.20. We can regard FilSp®” as a symmetric monoidal deformation in its own
right, with deformation parameter 72. Formally, we have a symmetric monoidal functor
2: Z — Z. Writing i: Z — FilSp for the functor from Definition 2.17, we see that
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io2: Z — FilSp is a symmetric monoidal functor that lands in the subcategory FilSp®".
The underlying functor can be depicted by the diagram

' 2 g0-2 2 S 2

Via Notation 3.83, this gives FilSp® the structure of a symmetric monoidal deformation.
The resulting right adjoint FilSp®" — FilSp is in fact the functor p from Remark 5.19.

5.3.2 Even deformations

We focus on the case of monoidal deformations. We have a choice of using either character-
isation (b) or (c) from Lemma 5.14 as the definition of evenness in a monoidal deformation.
In general these notions differ, but we will show that they agree under suitable hypotheses.
It is an arbitrary choice which of the two characterisations we regard as the definition.

Definition 5.21. Let C be a monoidal deformation. The even subcategory C¢" of C is the
smallest subcategory closed under colimits that contains p(S™?) for all n and s. We say
that an object X € C is even if it belongs to C¢".

Because our definition uses only the filtered spheres, it is only applicable in the cellular
setting. More precisely, the above definition implies that every even object is cellular.

Proposition 5.22. Let C be a monoidal deformation.
(1) The co-category C*" is a presentable stable co-category.
(2) The subcategory C= C C is closed under colimits and tensor products.
Only under the following hypotheses on C do we obtain a usable notion of evenness.

Proposition 5.23. Let C be a cellular monoidal deformation with a compact unit. Suppose that
the filtered spectrum o (1¢) is even. Then for every X € C, the following are equivalent.

(a) The object X belongs to C*".
(b) The homotopy groups 1, (X /T) vanish whenever s is odd.
(c) The filtered spectrum X is even.

Moreover, the adjunction p 4 o restricts to an adjunction between FilSp® and C®, which we
denote by

ev

FilSp®Y ——— C*.

Proof. Clearly (b) is equivalent to (c), because this is the case for filtered spectra by
Lemma 5.14. Using Lemma 3.87 (1), for all n and s we have an isomorphism

o(p(8™)) = £ o(1).
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It follows that if 0(1¢) is even, then ¢(p(S™2%)) is even for all 7 and s. Because the unit of
C is compact, the functor o: C — FilSp preserves colimits; see Theorem 3.88 (3). Using
this, we see that (a) implies (c). To see that (c) implies (a), one either reasons as in the proof
of Lemma 5.14, or one deduces it from the filtered case using Theorem 5.8. Finally, these
conditions show that when restricting ¢ to C®Y, it lands in FilSp®", so that the adjunction
restricts as indicated. n

In this case, evenness is preserved under limits too, which is not obvious from the
definition of C®¥ from Definition 5.21.

Corollary 5.24. Let C be a monoidal deformation satisfying the conditions of Proposition 5.23.
Then the subcategory C®V C C is closed under limits.

Proof. Because o preserves limits, this follows from Proposition 5.17 and from character-
isation (c) in Proposition 5.23. [ ]

Remark 5.25. The filtered model of Theorem 5.8 can be adapted to the even case as well. If
the conditions of Proposition 5.23 hold, then C is equivalent to modules over o(1¢) by
Theorem 5.8, which by assumption is an E«-algebra in FilSp®”. As FilSp®* is a monoidal
subcategory of FilSp, it follows that ¢ induces an equivalence of co-categories

C® = Mod, 1, (FilSp®").

Postcomposing this with the (symmetric monoidal) equivalence p: FilSp® — FilSp
from Remark 5.19, we obtain an equivalence

Cev i) MOdp(U(lc)) (F118p)

If C is symmetric monoidal, then these equivalences are of symmetric monoidal co-
categories.

5.3.3 Even synthetic spectra

We now specialise to the case of synthetic spectra. We do not get a good notion of evenness
in Syn;. for every E, because the signature of the synthetic sphere may not be even. The
following condition on E will ensure this.

Definition 5.26 ([Pst22], Definition 5.8). Let E be a homotopy associative ring spectrum.

(1) Afinite spectrum P is called finite even E-projective if E, P is a projective E,-module
and is concentrated in even degrees.

(2) We say that E is of even Adams type if it is of Adams type (see Definition 2.86) and
can be written as a filtered colimit of finite even E-projective spectra.

If E is of even Adams type, then it follows that E.E is also concentrated in even degrees.
Beware that asking E to be of even Adams type is stronger than asking for E, to be
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concentrated in even degrees and for E to be of Adams type, as the following example
illustrates.

Example 5.27.
(1) The sphere spectrum S is of even Adams type.
(2) The ring spectrum MU is of even Adams type; see [Pst22, Example 5.9].

(3) The ring spectrum F, is not of even Adams type, even though 7,F, is even and F,,
is of Adams type. Indeed, 71.(F, ® F;) is the (p-primary) dual Steenrod algebra,
which is not concentrated in even degrees.

(4) On the other hand, if E is Landweber exact and E, is concentrated in even degrees,
then E is in fact of even Adams type; see [Pst22, Example 5.9]. A

Lemma 5.28. Let (A,T) be a graded Hopf algebroid, with A and T concentrated in even degrees.
Write
ngomoda’r) and ngomod‘()gflr)

for the full subcategories of grComod, , .y on those graded comodules that are concentrated in
even, respectively odd, degrees. Then we have a symmetric monoidal equivalence

ngomod( Ar) =~ ngomod‘a’r) X ngomod((’ifir).

Proof. This is immediate. [ |

The characterisation of evenness looks slightly different in the synthetic setting, due to
the reindexing when passing from filtered to synthetic spheres from Proposition 4.34.
Namely, because of the relation

P(SE) = Sgm "
we should think of a synthetic sphere Sg;;, as being even when 7 + s is even.

Lemma 5.29. Let E be a homotopy-associative ring spectrum of even Adams type. Then o(Ssyn)
is evern.

Proof. Recall from Proposition 4.34 that we have an isomorphism
s (=) = My eyu(0()).

It follows that ¢'X is even if and only if 77,5 (X/7) vanishes whenever n + s is odd. By
Example 4.56, we have an isomorphism

ﬂnrs(ssyn/’f) = EXtSE'*nE+S(E*, E*) = EXtSE*E(E* [7’1 + S], E*)

Using the splitting of grComod ; from Lemma 5.28, it follows that these groups vanish
whenever 7 + s is odd, proving that ¢(Ssyn) is even. [ |
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Translated to the synthetic setting, Proposition 5.23 takes the following form.

Proposition 5.30. Let E be a homotopy-associative ring spectrum of even Adams type. Let X be
a cellular E-synthetic spectrum. Then the following are equivalent.

cell

(a) The synthetic spectrum X belongs to the smallest subcategory of Syny generated under
colimits by the synthetic spheres S™° where n + s is even.

(b) The homotopy groups 7,,s(X /T) vanish whenever n + s is odd; in other words, the second
page of the signature spectral sequence of X is concentrated in even total degree.

(c) The filtered spectrum o X is even in the sense of Definition 5.15.

If this is the case, then we say that X is even. Moreover, the adjunction p — o restricts to an
adjunction

ev

0
FilSp® —— (Syn%en)e".
UGV

Proof. Using Lemma 5.29, it follows that Proposition 5.23 applies. [ |

Remark 5.31. The restriction to the cellular case is an artefact of our use of filtered spectra
to define the notion of evenness. In the case of synthetic spectra, one can define a notion of
evenness that does not require cellularity assumptions: see [Pst22, Section 5.2]. It follows
from Theorem 5.13 of op. cit. that if Syn, is cellular, then these two notions of evenness
coincide. Moreover, Pstragowski proves that the homological t-structure on Syn;. restricts
to a t-structure on Synf” whose heart is equivalent to grComody';; see Remark 5.11 of op.
cit.

Example 5.32. To see why we have to restrict to E of even Adams type, consider the case
E = F,. Then for every s > 0, we have an isomorphism 77os(C7) = F, - h{. It follows that
0 (Ssyn) is not an even filtered spectrum. As a result, the subcategory of Syng, generated
under colimits by the spheres S™° for n + s even is not related to FilSp®” in a natural
way. A

Corollary 5.33. Let E be a homotopy-associative ring spectrum of even Adams type. Let X be a
spectrum. Then (vX)W is even if and only if E. X is concentrated in even degrees.

Proof. This follows immediately from the isomorphism from Example 4.56:
Ts(VX/T) = Exty'y (E., E.X) = Exty (E[n + 5], E.X),

combined with the splitting of Lemma 5.28. u

Example 5.34. By Corollary 5.33, the synthetic sphere S"* is even if and only if n + s is
even. In particular, the sphere S%~1 is not even, and as a result, the map T does not live in
Syn$’. However, the map 72: %2 — S does live in this subcategory.
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If we restrict our attention to only the even synthetic spectra, then it would be more useful
to use the letter T for what we would otherwise denote by 72; in other words, to regard 72
as the deformation parameter. (The resulting deformation adjunction would then factor
as the deformation structure on FilSp®’ from Remark 5.20 followed by the adjunction
eV - ¢¢v.) From our perspective, this is what happens in the literature when motivic
spectra are used to study the stable stems; see Section 5.4, particularly Theorem 5.40, for
more information. A

Our approach naturally gives us limit-closure of even synthetic spectra, at least up to
cellularisation. Note that the limit-closure of even synthetic spectra is absent from the
discussion in [Pst22, Section 5.2].

Corollary 5.35. Let E be a homotopy-associative ring spectrum of even Adams type. Then the

subcategory (Synsh)ev C Syn$e!! is closed under limits. In particular, if Syn is cellular, then

Pstragowski’s subcategory Syn}’ C Syny is closed under limits.
Proof. This follows from Corollary 5.24. n

Remark 5.36. Via Remark 5.25, the filtered models for Syn, from Section 5.2 also carry
over to Syn}’. For instance, we obtain a symmetric monoidal equivalence

Mod(vs)g (Syn%") ~ MOdTot(r>2*(E['])) (FilSp).

Example 5.37. The most relevant case for us is where E = MU. Since MU-synthetic
spectra are cellular, the above discussion applies. Recall that there is an equivalence

grComodyyi; vy = QCoh(Myg).
As a result, the special fibres of Synyy; and SEB;}I’U are, respectively,
IndCoh (97, ) and  D(QCoh(My,)).

From the geometric perspective, the category of all graded MU.MU is a little more
awkward, where we have to work with two sheaves (the even and odd parts) separately,
so that only even MU-synthetic spectra have this more elegant geometric description. A

5.4 Motivic spectra

We assume basic familiarity with motivic spectra.

Notation 5.38. We write Sp for Morel-Voevodsky’s symmetric monoidal co-category of
motivic spectra over Spec C. We write SpCCeu for the smallest stable subcategory of Sp- that
is closed under colimits and that contains both G,, and the (categorical) suspension of the

unit.
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The objects G, and the suspension of the unit are the two ‘circles” of motivic homotopy
theory, making it have a notion of bigraded homotopy, and explaining the above notion
of cellularity.

Motivic homotopy theory is by nature an algebro-geometric homotopy theory. It is very
surprising then that over C, it turns out to have a deep connection to the Adams-Novikov
spectral sequence for ordinary spectra.

¢ Levine [Lev15] shows that the Betti realisation of the slice spectral sequence for
the C-motivic sphere spectrum is isomorphic to the (décalage of the double speed)
Adams—Novikov filtration for the sphere spectrum (more generally, Levine shows
this over an algebraically closed field of characteristic zero).

¢ Hu-Kriz-Ormsby [HKO11] show that at the prime 2, differentials in the C-motivic
Adams-Novikov spectral sequence for the motivic sphere can be deduced formally
from differentials in the ordinary Adams—Novikov spectral sequence for the sphere.
(More generally, they work over an algebraically closed field of characteristic zero.)
Stahn [Sta21] showed the analogous odd-primary version of this.

¢ There is a twisted endomorphism T of the motivic sphere spectrum, and its cofibre
admits an Ee.-structure. Gheorghe—-Wang—Xu [GWX21] show that modules over Ct

in (Spcceu)ﬁ is equivalent to the derived co-category of BP,BP-comodules.

Remark 5.39. Bachmann-Kong-Wang—Xu [Bac+22] have generalised the results by Gheorghe-
Wang—Xu on the structure of C-motivic spectra to an arbitrary base field. The answer is
more complicated; very roughly speaking, the arithmetic of the base field starts to play a
big role (which was not visible in the case of C because it is algebraically closed).

The above suggests that the C-motivic category should have a close relation to the MU-
synthetic (or BP-synthetic) category. This is true in a very strong sense: up to p-completion,
MU-synthetic spectra form a full subcategory of C-motivic spectra.

Theorem 5.40 (Gheorghe-Isaksen—Krause-Ricka, Pstragowski). Let p be an arbitrary
prime. There exists a symmetric monoidal equivalence

cell

(SpE™)y — (Syniy))

that sends T to T2. Under this equivalence, Betti realisation corresponds to T-inversion.

Proof. See [GIKR21, Theorem 6.12] or [Pst22, Theorem 7.34]. These two equivalences
are related via the equivalence of Corollary 5.11 (or rather, the even version of it; see
Remark 5.36). |

The aforementioned connections between C-motivic spectra and Adams-Novikov spec-
tral sequences now match up with synthetic notions we previously introduced. For
instance, the result of [HKO11] now corresponds to the Omnibus Theorem; see also
[BHS23, Remark A.2].
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Warning 5.41. Unlike what the case of synthetic or ordinary spectra might suggest, the
two modifications that we have to do on Sp. are quite drastic.

& Most varieties are not cellular, so that SpCCell does not see a lot of the algebraic

geometry contained in that category.

¢ Unlike in the case of ordinary spectra, rational motivic spectra are highly non-
trivial and contain a lot of interesting information. Rational objects are killed by
p-completion, so we lose a lot of information by passing to p-complete objects.

As explained in Chapter 1, cellular motivic spectra were used in computational stable
homotopy theory in various ways. Anachronistically, the equivalence of Theorem 5.40
explains why motivic spectra in particular were so useful in this regard. More seriously,
as explained in [IWX23, Section 1.1.2], this provides a way to make these computational
arguments using a much lighter technical setup, so that it does not logically depend on
the setup of motivic homotopy theory. This is useful as this usage of motivic homotopy
theory relies on deep results, such as Voevodsky’s computation of the motivic dual
Steenrod algebra [Voe03; Voel0]. The analogous computation in the synthetic setting
is a more straightforward adaptation of the spectral one; see [Pst22, Section 6.2]. (One
cannot combine this with the equivalence of Theorem 5.40 to obtain a new proof of these
computations however, as Voevodsky’s result is input to the proof of Theorem 5.40.)

Example 5.42. Gheorghe-Isaksen—Krause—Ricka [GIKR21, Definition 3.2] define a functor
I': Sp — FilSp given by sending X to

Tot(Ts2. (MU @ X)).

Observe that this is a cosimplicial décalage (Definition 2.73) using the double-speed
Whitehead filtration instead of the ordinary one. We may identify I" with the functor v,
up to some slight caveats due to working with even objects and with cosimplicial objects
(which can only capture completions). Specifically, under the equivalence

Mody . o)) (FilSp) ~ Syny,,

from Remark 5.36, we see that on the full subcategory of Sp on those spectra with even
MU-homology, the functor I' can be identified with the T-completion of v. On general
spectra, it identifies ' with the right adjoint to the inclusion Synyy; € Syn,,; applied to
T-completion of v. (One might refer to this right adjoint composed with v as the even

synthetic analogue.) A

Under the equivalence of Theorem 5.40, the functor v (or equivalently I') is useful because,
in general motivic homotopy theory, there is no “motivic analogue’ functor. At least over
C, this allows for the construction of new (cellular) motivic spectra.

Example 5.43. In [GIKR21, Section 5], Gheorghe-Isaksen—-Krause—Ricka use Theorem 5.40
to define what they call motivic modular forms. Namely, they consider I'(tmf), which after
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p-completion defines a C-motivic spectrum. It plays an important part in the computation
of Isaksen—-Wang-Xu [IWX23].

We prefer to think of this as synthetic modular forms, as its construction is inherently
synthetic. Phrased in synthetic terms via Example 5.42, this definition is given by

smf := v tmf.

This uses that the MU-homology of tmf is even. (Note that, as tmf is connective, it is
MU-nilpotent complete, so its synthetic analogue is T-complete.) Note also that these
synthetic modular forms are different from the nonconnective versions Smf and SMF
introduced in joint work of Carrick, Davies and the author in [CDvN25]. A

Recall from Remark 4.20 that there is an alternative grading convention for the synthetic
spheres known as motivic grading. As the name suggests, this fits better with grading
conventions of (stable) motivic homotopy theory.

Remark 5.44 (Indexing conventions). Let us write S/, for the motivic bigraded (t,w)-

sphere. As explained in [Pst22, Section 7.1], this amounts to

SO,O

mot

=X7 A° and g1

mot

=Xy P

Let us for the moment use the motivic grading on synthetic spectra, writing Sé}% for the
synthetic (¢, w)-sphere in the sense of Remark 4.20. Then Sé}% is even in the sense of
Proposition 5.30 if and only if w is even; see Example 5.34. Under the equivalence of
Theorem 5.40, we have the correspondence between

t,w t,2w
Siot and S¢yn -

If we instead use Adams grading on synthetic spectra, then this correspondence is

between
St,w

mot

and Sé'yzrf"’t.



Appendix A

Informal introduction to spectral sequences

This chapter is meant as an informal introduction to spectral sequences and the role of
7. Although it is certainly possible to take this chapter as a first introduction to spectral
sequences, we particularly have in mind two kinds of readers: one who wants to look at
spectral sequences for the second time, and one who is familiar with these, but wants to
learn about the T-formalism specifically.

For the rest of this chapter, we fix a filtered spectrum X: Z°? — Sp. Recall from Chapter 2
that we regard X as a tool to understand its colimit X~*. For simplicity, and since this
covers most of our use cases, throughout this chapter we assume that X is constant from
degree 0 onwards:

s X X X S xS

As a result, we will simply ignore the spectra in negative filtration. Our goal then is to
understand 77, X°.

We may do this one degree at a time, so henceforth we fix an integer n. Hitting the above
diagram with the functor 7, we obtain a diagram of abelian groups:

e — NnXZ — 7'CnX1 — 7TnX0.

This filtered abelian group induces a strict filtration on 77, X, and this is what we aim to
understand. Our first job then should be to understand when an element in 77, X° is in
the image of 7, X!: in other words, to determine which elements have filtration at least 1.

A.1 The reconstruction problem

We have a cofibre sequence
X' — X' —aGr'X,
leading to a long exact sequence

oo — X — 1, X0 — 1, GrIOX —

139
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This allows us to test whether & € 7, X" has filtration at least 1: this happens if and only
if it goes to zero under the map 77,X° — 71, Gr” X. This pattern continues: if & € 7, X has
filtration at least 1, we then ask if it filtration is at least 2. Choosing a lift to 7, X1, we look
at the associated graded Gr' X, whose homotopy sits in a long exact sequence

o — X2 — X — 1, G X — -,

and we can iterate this procedure until a does not lift further, at which point we have
determined the filtration of .

This way of thinking only goes so far: it presupposes that we understand the elements of
11, X*, which we usually do not. In practice, what is more understandable is the homotopy
of the associated graded. Instead of starting with the 77, X*, we will start with the groups
7, Gr® X for all s, and then try to piece the 71, X° back together from this data. This
presents two issues:

(1) not every element in 7r, Gr’ X comes from 71,X* (in other words, there are “fake
elements”),

(2) even if an element in 71, Gr® X lifts to 77, X° (in other words, it is not “fake”), then it
may map to zero in 7, X°.

We can solve both of these issues using the same mechanism. We equip the homotopy of
the associated graded with more information that will make it “remember” the homotopy
of the filtered spectrum. This additional information comes in the form of self-maps on
the associated graded, known as the differentials. Concretely, a differential will connect a
“fake” element to an element that maps to zero under (a composite of) the transition maps.
As a result, we see that the purpose of these “fake” elements is to introduce relations in
the homotopy of 7, X°.

A.2 Differentials: obstructions to lifting

First, let us address issue (1). For this, we use the long exact sequence
e — X — 1, X — 1, G X — X —

which tells us that an element in 71, Gr’ X comes from 71, X® if and only if it maps to
zero in 7,1 X° 1. The question, then, is how explicit we can make this condition, where
‘explicit’ refers to describing it in terms of the associated graded as much as possible. It
would also be helpful to organise this information in a digestible way.

To make notation easier, we will focus on the case s = 0. Our situation is summarised by
the diagram

X2 X! X0
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where the dashed arrow indicates that the map is of degree 1: it is the boundary map
d: Gr’ X — ZX" of a cofibre sequence. By exactness, an element x € 71, G’ X comes
from 77, XY if and only if its image in .1 X" is zero. However, as we said before, we
usually do not know much about the homotopy groups of X!, so this is not a helpful
description. To approximate the question of the image dx € 71, _1 X! being zero, we first
ask if its image in the associated graded X' — Gr' X is zero:

X? X! - X0
| |
Gr' X ’ Gr’ X.

Write d;(x) for the image of dx in 71, Gr! X. If di(x) # 0, then dx # 0 as well, so in
particular we learn that x is not in the image of 7, X0. If on the other hand d; (x) =0,
then we are not yet done: all we learn is that dx € 7,4 X1 lifts to 7,1 X2 Choosing a lift,
we can ask the same question, testing whether this element is zero by looking at its image
. 2 5.
in 77,1 Gr° X:

X2 X1 X0
| |
Gr? X Gr¥ X.

This choice of lift will not be unique, and neither will the resulting class in 77,,_1 Grr X ;
the class in 71,1 Gr* X is only well defined up to the image of d;. We write da(x) for this
element in (77,1 Gr? X)/dy. If dy(x) is nonzero, then dx is also nonzero. If dy(x) is zero,
then we continue the story and define d3(x) in 77,4 Gr’ X (only well defined up to d;
and d,), et cetera.

We obtain inductively defined elements d,(x) for r > 1. If they all vanish, then our class
x lifts (possibly not uniquely) to an element of the limit X* = lim; X®. This gets us into
convergence issues. In good situations, this limit vanishes; let us assume that this is the
case. This is good news: it means that we can detect whether dx € 7, ;X! is zero by
checking if the d,(x) are zero for all r > 1. This, in turn, means that we can answer the
question whether x € 7, Gr’ X comes from 7, X.

In summary then: we have an inductively defined list of differentials d,(x), which (in good
cases) vanish if and only if x comes from an element in 77, X. While so far we only started
with classes in 71, Gr” X, the same applies when starting with an element of 7, Gr* X,
which lifts to 77, X® if and only if all differentials on it vanish.

A.3 Differentials: kernels of transition maps

On to issue (2), which is asking what the kernel of 7, X* — 7,X" is. Because the map
X* — X% is a composite of s maps, we can focus on the map X* — X*~! and iterate this
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procedure. Here we will encounter some of the awkwardness of working solely in terms
of the associated graded. To illustrate this, we start with an element a € 77, X°, and write
x for its image in 71, Gr® X. Our aim is to understand whether « maps to zero in 77, X1
We have a long exact sequence

i — Ty G X — T, X — X —

so by exactness, « maps to zero in 1, X°" 1 if and only if it is in the image of the map
41 Gr® X — 7, X°. Notice that in terms of x, this is equivalent to the existence of an
element y € 71,1 Gr* ! such that d; (y) = x. Iterating this procedure, we find that the
element & € 77, X° maps to a nonzero element in 77, X if and only if x is not in the image
ofdy,...,ds.

Remark A.1. It might appear there is an asymmetry in the above: to resolve issue (1),
we had to check that infinitely many differentials on x vanish, whereas for issue (2)
we only have to check a condition involving finitely many differentials. This is due to
the simplifying assumption we made earlier that the filtered spectrum is constant after
filtration 0. This is equivalent to the associated graded being zero in negative filtrations. In
effect, this means that differentials originating in filtration below 0 automatically vanish,
so that the condition of not being hit by them is vacuous.

Phrasing the previous story solely in terms of the associated graded runs into some
slightly delicate matters. By this we mean that we do not start with a class « € 7, X%,
but only with a class x € m, Gr® X. If all differentials on x vanish, and moreover x is not
the target of a differential, then any lift of x to 77, X* maps to a nonzero element in 77, X°.
However, if d,(y) = x for some r < s and some y, then we only learn that there exists a
lift of x to 71, X® that will map to zero in 71, X°~". It is not guaranteed that every lift will
satisfy this: if « € 77, X® is a lift of x, then for any B € 71, X® that comes from T, X5, the
element a 4 B also lifts x. But the associated graded has no control over : it maps to
zero in 71, Gr® X. This is a matter we cannot ignore, since B need not even map to zero in
7, X". The summary then is that the associated graded 7, Gr® X only sees phenomena up
to higher filtration.

This is a problem that we simply have to live with if all we understand is the associated
graded. It can be delicate matter to check that a lift of an element hit by a d,-differential
is the lift that dies r filtrations down. In practice, one might be able to bootstrap this
together by comparing different spectral sequences: in one spectral sequence, there might
be no elements of higher filtration, so that there are no problems choosing a lift. This
choice can then be transported to different spectral sequences where it is not clear how to
choose this lift.
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A.4 Graphical depiction of spectral sequences

At this point, we need a way to organise all of this information in a way to make it more
approachable for humans. Define

El” :=m, Gr' X,
and define, for every n, s, the first differential
. |/hs n—1,s+1
d1 : El — El

as the boundary map E}”* — 7,1 X**1 followed by the projection 71,1 X*™! — E'f_l’s 1

We depict these by letting the horizontal axis correspond to the stem 7, and the vertical
axis correspond to the filtration s. The differential d; goes one to the left, and one up.

The differential d, goes one to the left, and 7 units up. This map is however only well
defined after taking homologies for the preceding differentials dy, ..., d,_1. We therefore
inductively define, for r > 2,

. n,s n—1,s+r—1
ker(d,—1: E"°, = E/ )

. . pn+l,s—r+1 n,s\
im(d,_1: E/ "} —E")

E'S i= H' (B, dy_q) =

r—1’

Roughly speaking, doing this process infinitely many times results in page oo, denoted Egs’.
In good cases (the other part of convergence issues), this is isomorphic to the associated
graded of the induced strict filtration on 7, X%:

s 0
s o FmX
0 Fs+1 7'L'nX0

In general, without the simplifying assumption that X? & X~*, this would instead be the
associated graded of the filtration on 77, X~.

Remark A.2. The reason the differential goes r units up is because we are using a cohomolo-
gical indexing on the filtration. If we instead indexed X to be a functor Z — Sp, which is
a homological indexing on filtration, then the differential would decrease the filtration.

In summary: by passing from the filtered spectrum to the associated graded, we intro-
duced “fake” elements. These elements are responsible for recording which elements
die under the transition maps 7, X* — 7, X*"!. Taking homology for a d,-differential
removes both the fake elements, and kills elements that die under X* — X°7". Letting
all differentials run brings us to the associated graded of the filtration we were trying to
understand.
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A.5 Reformulation in terms of T

It would be useful to introduce some notation to make it easier to describe transitions
maps. This is what 7 is designed to do. If X is a filtered spectrum, let us define

s X 1= 11, (X5).

Let Z[7] denote the bigraded ring where T has bidegree (0, —1). We turn 7, , X into a
bigraded Z[t|-module by letting T act as the transition maps.

Practically, all this means is that if « € 71,5 X, then we write T - a for the image of «
under the transition map X* — X*~1. This is helpful as we do not have to give each
transition map its own name, which would become quite cumbersome when expressing
more involved relations.

The previous discussion then takes the following form. If x € 77, Gr® X is a class that is
hit by a d,-differential, then there exists a lift « € 77,5 X of it such that

T a0 =0.

Further, passing from 7, s X to 71, X~ is given by the colimit along the transition maps,
which in this language is given by inverting 7. In this way, we see the fundamental
difference between . . X and 7, X~ *: while differentials in the spectral sequence are
responsible for killing elements in the latter, in the former they only kill T-power multiples
of it, and thereby leave a trace of their existence.
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