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Abstract

We show that the ∞-category of synthetic spectra based on Morava E-theory
is generated by the bigraded spheres and identify it with the ∞-category of mod-
ules over a filtered ring spectrum. The latter we show using a general method for
constructing filtered deformations from t-structures on symmetric monoidal stable
∞-categories.

Pstrągowski [Pst22] defined an ∞-category SynR of R-synthetic spectra categorifying the
R-Adams spectral sequence in spectra, where R is an Adams type ring spectrum. This
comes with a natural notion of bigraded spheres, but unlike in spectra, it is not clear in
general whether bigraded homotopy groups detect equivalences of R-synthetic spectra.
If this happens, we say that SynR is cellular. The main result of this paper is to show
that this holds when R is Morava E-theory. In the following, if C a stable ∞-category
with a t-structure, we write Fil(C) for Fun(Zop, C), and we let Wh: C → Fil(C) denote its
Whitehead filtration functor.

Theorem A. Let E denote a Morava E-theory at an arbitrary prime and height.

(1) The ∞-category SynE is cellular.

(2) There is a symmetric monoidal equivalence

SynE
≃−→ Modmap(νS, Wh(τ−1νS))(FilSp)

such that νX is sent to Tot(Wh(E�[•] � X)) whenever X ∈ Sp is E-nilpotent complete.

Proof. See Theorem 1.4 and Corollary 2.5 below. ■

Pstrągowski showed in [Pst22] that MU-synthetic spectra are cellular. Later, Lawson
[Law24] generalised this, showing that SynR is cellular whenever R is connective. This
does not imply Theorem A (except at height 0): indeed, since E is Fp-acyclic for all p, the
∞-category SynE is not equivalent to SynR for any connective R.

As explained by Burklund–Hahn–Senger [BHS22, Appendix C], Lawson [Law24, Corol-
lary 6.1], and Pstrągowski [Pst24, Sections 3.3 and 3.4], if SynR is cellular, then this leads
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to a filtered model for R-synthetic spectra. This is the second part of Theorem A. Although
these types of results are thus well-known, we include a proof in order to highlight the
role that t-structures play in obtaining such a result. Namely, the main hurdle in proving
such statements is constructing a FilSp-module structure on SynR, or equivalently an
action of the monoidal poset Z. Unlike the discrete monoid Zdisc, the monoidal poset Z
has no simple universal property. We include a short discussion of how t-structures give
rise to FilSp-module structures; this is implicit in the previously cited works.
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1 Cellularity

Fix a homotopy-associative ring spectrum R of Adams type. We follow the terminology
and notation of [Pst22]. In addition, it will be useful to introduce the following concept.

Definition 1.1. A cofibre sequence X → Y → Z of spectra is called R-exact if it yields a
short exact sequence on R∗-homology:

0 −→ R∗X −→ R∗Y −→ R∗Z −→ 0.

Definition 1.2. A (not necessarily stable) full subcategory of Sp is called R-thick if it is
closed under

(1) arbitrary suspensions,

(2) retracts,

(3) 2-out-of-3 for R-exact cofibre sequences.

For a collection of spectra J ⊆ Sp, we denote by ThickR(J) the smallest R-thick subcat-
egory of Sp containing J.

It is straightforward to see that the subcategory Spfp
R of finite R-projective spectra is

R-thick. It follows that
ThickR(S) ⊆ Spfp

R .

Proposition 1.3. If we have an equality

ThickR(S) = Spfp
R ,
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then SynR is cellular.

We do not know if this is a necessary condition for SynR to be cellular.

Proof. The ∞-category SynR is generated under colimits by Thick(νP | P ∈ Spfp
R ); see

[Pst22, Remark 4.14]. It therefore suffices to show that this thick subcategory is contained
in Thick(νSn | n ∈ Z). The assumption Spfp

R ⊆ ThickR(S) implies that

ν(Spfp
R ) ⊆ ν ThickR(S).

Recall that ν is additive and sends R-exact cofibre sequences to cofibre sequences; see
[Pst22, Lemma 4.23]. Using this and the fact that Sp is idempotent-complete, it follows
from the definition of an R-thick subcategory that we have the containment ν ThickR(S) ⊆
Thick(νSn | n ∈ Z). This finishes the proof. ■

Theorem 1.4. Let p be a prime and let h ⩾ 0 be an integer, and let E denote a Morava E-theory
at height h. Then SynE is cellular.

In the proof, let K denote a Morava K-theory corresponding to E.

Lemma 1.5. Let X → Y be a map of finite E-projective spectra. Then E∗X → E∗Y is surjective
if and only if K∗X → K∗Y is surjective.

Proof. Before we prove this, let us recall that since E∗ is a graded power series ring over
a local ring, every graded projective module over it is free. It follows that for every
P ∈ Spfp

E , we have a natural isomorphism

K∗ �E∗ E∗P = π∗(K)�π∗E π∗(E � P)
∼=−→ π∗(K �E (E � P)) = π∗(K � P) = K∗P.

We proceed to the proof.

( =⇒ ) Suppose that E∗X → E∗Y is surjective. Tensoring this with K∗ yields a surjective
map, which by the above isomorphism can be identified with the map K∗X → K∗Y.

( ⇐= ) Suppose that K∗X → K∗Y is surjective, and write C∗ = coker(E∗X → E∗Y). The
isomorphism above and right exactness of the tensor product imply that coker(K∗X →
K∗Y) ∼= K∗ �E∗ C∗ = 0. Since C∗ is finitely generated, Nakayama’s lemma applies, which
implies that C∗ = 0, so that E∗X → E∗Y is surjective. ■

Proof of Theorem 1.4. By Proposition 1.3, it suffices to show that every finite E-projective
spectrum P is in ThickE(S). By suspending sufficiently many times, we may without loss
of generality assume that P is connective. We will now proceed by ascending induction
on N × N with the lexicographical ordering, where to every finite E-projective spectrum
P we assign

(dim P, rk P) ∈ N × N,
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where dim P denotes the dimension of the top cells of P, and where rk P := rkE∗(E∗P).
For the base case, where dim P = 0, it follows from connectivity of P that P is a sum of
zero-spheres, which is obviously in ThickE(S). We proceed to the inductive step.

As a first case, assume that there exists a top-dimensional cell (of dimension d := dim P)
for which the projection onto the top cell P → Sd induces a surjection on E∗-homology.
Let F denote the fibre of this map. A surjection of projective modules is always split, so
E∗F = ker(E∗P → E∗Sd) is projective, and therefore F ∈ Spfp

E . Moreover, we have rk F =

rk P − 1 and dim F ⩽ dim P, so by our induction hypothesis, we have F ∈ ThickE(S).
Since F → P → Sd is an E-exact fibre sequence, it follows that P ∈ ThickE(S).

We may therefore assume that for every choice of top cell for P, the projection onto the top
cell is not surjective on E∗. A choice of cellular filtration on P gives us a cofibre sequence

Skd−1(P) −→ P −→
⊕

Celld(P)

Sd,

where Celld(P) is the set of d-dimensional cells for the chosen cellular filtration. Consider
now the map on K-theory induced by projection onto a top-dimensional cell

K∗P −→ K∗Sd ∼= K∗−d.

As K∗ is a (graded) field and the right hand side is of rank 1, this map is either surjective
or zero. If it were surjective, then by Lemma 1.5 it would have also been surjective on
E∗, in contradiction to our assumption. It must therefore be the zero map on K∗. As this
argument applies to all top cells, we conclude that K∗(P) → K∗(

⊕
Celld(P) Sd) is also the

zero map. It follows that Skd−1(P) → P is surjective on K∗, so by Lemma 1.5 it is also
surjective on E∗. We learn that the cofibre sequence⊕

Celld(P)

Sd−1 −→ Skd−1(P) −→ P

is E∗-exact. But dim(Skd−1(P)) = dim(P)− 1, so by the induction hypothesis, we have
Skd−1(P) ∈ ThickE(S). We conclude that P ∈ ThickE(S), and we are done. ■

2 Deformations from t-structures

The ∞-category of filtered spectra is defined as FilSp = Fun(Zop, Sp), where we consider
Z as a poset under the usual ordering. We regard this as a symmetric monoidal ∞-
category under Day convolution (where Z carries addition); note that this turns it into
a presentably symmetric monoidal ∞-category, i.e., an E∞-algebra in PrL. This category
comes with a notion of shifting: if X is a filtered spectrum, then we write X(n) for the
filtered spectrum given by

Zop Zop Sp.−n X
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Note that this functor is equivalently given by tensoring with 1(n), where 1 denotes the
unit of FilSp. The connecting maps of X induce natural transformations X(n + 1) → X(n)
for every n.

Following [Bar23], a deformation is a module over FilSp in PrL. If C is a deformation
and X ∈ C, then we can define X(n) as 1(n) � X. This gives rise to a filtered mapping
spectrum: for X, Y ∈ C, we define filmapC(X, Y) to be the filtered spectrum given by

mapC(1(−)� X, Y),

where mapC denotes the mapping spectrum functor of the stable ∞-category C.

Theorem 2.1 (Filtered Schwede–Shipley; Pstrągowski [Pst24], Proposition 3.16). Let C
be a deformation, and let X ∈ C. Then the following are equivalent.

(a) The functor filmapC(X,−) : C → ModfilmapC (X,X)(FilSp) is a symmetric monoidal equi-
valence.

(b) The object X is compact, and the objects X(n) for n ∈ Z generate C under (de)suspensions
and colimits.

Applying this result requires obtaining a FilSp-module structure on C. As noted in the
introduction, obtaining this structure can be difficult, because the poset Z is not free as a
symmetric monoidal ∞-category. An important source of such a structure is a monoidal
t-structure on C, as we now explain.

Suppose C is a symmetric monoidal stable ∞-category with a compatible t-structure.
Recall that the Whitehead filtration functor Wh: C → Fil(C) is lax symmetric monoidal,
being the composite

C Fil(C) Fil(C)Const τ
diag
⩾0

where the first functor is the constant-filtered-object functor, and the second is the
connective cover with respect to the diagonal t-structure (see, e.g., [Hed20, Proposi-
tion II.1.23]), both of which are canonically lax symmetric monoidal. If A is an E∞-
algebra in C, we therefore obtain an E∞-algebra Wh A in Fil(C), which by the equivalence
CAlg(Fil(C)) ≃ Funlax(Zop, C) of [HA, Example 2.2.6.9] is the same as a lax symmetric
monoidal structure on the functor Wh A : Zop → C.

Definition 2.2. Let C be a symmetric monoidal ∞-category with a compatible t-structure.
Let A be an E∞-algebra in C. We say that A is t-strict if the lax symmetric monoidal
functor Wh A : Zop → C is strong symmetric monoidal.

Lemma 2.3. Let C and A be as in Definition 2.2. Then A is t-strict if and only if

(a) The map 1 → τ⩾0A induced by the unit of A is an isomorphism.

(b) The natural map τ⩾n A � τ⩾m A → τ⩾n+m A is an isomorphism for every n, m ∈ Z.

5



Proof. Condition (a) says that Wh A preserves empty products, while condition (b) says it
preserves binary products. ■

Theorem 2.4. Let C be a presentably symmetric monoidal stable ∞-category equipped with a
compatible t-structure. Let A be an E∞-algebra in C. Suppose that

(a) A is t-strict,

(b) the unit 1 of C is compact,

(c) the objects Σn τ⩾m A for n, m ∈ Z generate C under colimits.

Then the functor

mapC(1, Wh A �−) : C ≃−→ ModmapC (1,Wh A)(FilSp)

is an equivalence of symmetric monoidal ∞-categories.

Proof. The symmetric monoidal functor

Z Zop C,n 7→−n Wh A n 7−→ τ⩾−n A

induces a symmetric monoidal left adjoint FilSp → C, giving C the structure of a sym-
metric monoidal deformation. Applying Theorem 2.1, all that remains is to identify
filmapC(1,−) with map(1, Wh A � −). By assumption of t-strictness, we see that for
every n ∈ Z, we have a natural (in n) isomorphism

mapC(1, τ⩾n A) ∼= mapC(τ⩾−n A, 1).

The right-hand side is (by definition of the deformation structure) the value at filtration n
of the filtered spectrum filmapC(1, 1), proving the claim. ■

Corollary 2.5. Let E denote a Morava E-theory. Then there is a symmetric monoidal equivalence

SynE
≃−→ Modmap(νS, Wh(τ−1νS))(FilSp)

such that νX is sent to Tot(τ⩾⋆(E�[•] � X)) whenever X is a E-nilpotent complete spectrum.

Proof of Corollary 2.5. In the case C = SynR, the τ-inverted unit τ−1νS is a t-strict E∞-
algebra. The resulting functor map(1, Wh A) is called the signature functor in [CD24;
CDvN24a; CDvN24b], where it is denoted by σ; in [BHS22, Appendix C], this functor is
denoted by i∗. The result now follows by using [CDvN24a, Proposition 1.25]. ■

Remark 2.6. For general R, the underlying filtered spectrum σν(S) is, after completion,
equivalent to the décalage of the cosimplicial Adams resolution:

Tot(τ⩾⋆(R�[•])).

If R is an E∞-ring, then this equivalence is naturally one of filtered E∞-rings; see [CDvN24a,
Proposition 1.25]. If the sphere is R-nilpotent complete, then this is even true without

6



completion of filtered spectra. Alternatively, as in [BHS22, Proposition C.22], if R is an
E∞-ring, the above implies that σ induces a symmetric monoidal equivalence

Modσ(νS)∧τ (SynR)
≃−→ ModTot(τ⩾⋆(R[•]))(FilSp).
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