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These are some slightly expanded notes of a talk I gave in spring 2024 edition of the
Freudenthal topology seminar in Utrecht. My goal was to give an introduction to the
approach to computing K(n)-local Picard groups that Itamar Mor presents in his thesis
[Mor23a; Mor23b]. His thesis contains much more, like a discussion of Brauer groups
for instance, but I restricted myself to the Picard case. Moreover, I did not present
any in-depth proofs, but rather wanted to focus on the overall ideas and strategies.
This is particularly evident in §5 of these notes, where I merely give the statements of
Mor’s results; this does not do justice to the amount of work involved in setting up this
machinery.

This talk features several spectral sequences. I have not included pictures of these spectral
sequences in these notes (simply out of laziness), but I have included references to places
to find these pictures. I highly recommend the readers to look at these: I have found that
any story involving spectral sequences come to life much more when looking at a picture
in conjunction with the formulas.

I would like to thank the audience for their active participation. In particular, I thank
Gijs Heuts and Tobias Lenz for pointing out some small mistakes and for their helpful
comments during the talk. Any mistakes in these written notes however remain my
own. If you find any typos or mistakes (or are otherwise confused by a comment I make),
please do not hesitate to let me know.

1 Introduction

Definition 1.1. Let C be a monoidal ∞-category. The Picard group of C is the group given
by

Pic(C) := {⊗-invertible objects of C }/≃.

If C is symmetric monoidal, then the group Pic(C) is an abelian group. If A is an E∞-ring,
then we will abbreviate

Pic(A) := Pic(ModA).
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There is a better version of the Picard group where we remember the equivalences between
these objects, instead of identifying equivalent objects. As we will see momentarily, even
if one is only interested in computing Pic(C), it is nonetheless a good idea to use this
more structured object instead.

Variant 1.2. Let C be a symmetric monoidal ∞-category. The Picard space of C is the full
subgroupoid Pic(C) of C≃ on the objects in Pic(C). The symmetric monoidal structure
on C equips Pic(C) with the structure of an E∞-monoid in spaces. As it is a grouplike
E∞-space, it corresponds uniquely to a connective spectrum pic(C) called the Picard
spectrum of C.

Remark 1.3. At the moment I am ignoring size issues; see Proposition 2.7 for a treatment
of these.

From the perspective of stable homotopy theory, the Picard group can be motivated by
saying it is the largest collection of objects on which one can index the homotopy groups
in C.

Example 1.4. We have
Pic(Sp) = { Sn | n ∈ Z } ∼= Z,

reflecting why we index homotopy groups of spectra by the integers. ▲

Example 1.5. We have an equality

Pic(ModKU) = {ΣnKU | n ∈ Z }.

Indeed, every such shift is certainly an invertible KU-module. Since the homotopy groups
π∗KU = Z[u±] form a very simple ring*, it is not too difficult to show that these are
indeed all invertible objects; see [Wol98]. However, writing it in this manner is very
redundant: as groups, we have

Pic(ModKU) ∼= Z/2,

being generated by ΣKU. This is a very convoluted way of saying that homotopy groups
of KU-modules are 2-periodic. ▲

The main goal of today is to understand

Pic(SpK(n)).

This was first considered by Hopkins, Mahowald and Sadofsky [HMS94], who, among
other things, compute this at height n = 1 (at all primes). The goal of today is to follow
Mor’s recent approach [Mor23a], which, among other things, reproduces the height n = 1
computation.

*Specifically, what we use is that it has cohomological dimension 1, because it is a PID.
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The idea is to use Galois descent for Picard groups, but to do this in a way that carefully
keeps track of the profinite nature of Morava E-theory. To give a more gentle introduction
to these ideas, I want to start by discussing an easier example, namely, the case of real
K-theory KO.

2 The Picard group of KO

Our warm-up goal will be to compute Pic(KO). Note that all shifts of KO are in there,
and since KO is 8-periodic, we learn that this at least contains Z/8 as a subgroup. We
cannot however proceed in the same way as in Example 1.5, because π∗KO is not a very
nice ring algebraically speaking. What we can do is start with the more elementary case
of Pic(KU), and use this to compute Pic(KO). The key input is the identification

KO ≃ KUhC2 . (2.1)

The idea then is to compute Pic(KO) by taking the homotopy fixed points of Pic(KU).

Example 2.2. As a further warm-up, we review how to compute π∗KO. The sentiment
is the same: we regard the case of π∗KU as easy, and try to use a fixed point method to
deduce the case of KO from this.

Concretely, there is a spectral sequence taking us from the algebraic notion of fixed points
to the homotopy fixed points. This is the homotopy fixed point spectral sequence (HFPSS),
which is of the form†

Ek,s
2

∼= Hs(C2, πk+sKU) =⇒ πk(KUhC2).

The identification from (2.1) tells us that this in fact abuts to π∗KO. The spectral sequence
moreover converges strongly, allowing us to truly compute π∗KO. A picture of this is
reproduced in, e.g., [MS16, §7, Figure 3]. ▲

We would like to apply this to the case of Picard groups. The ∞-category of KU-modules
inherts a C2-action from KU, so we can talk about the fixed points

(ModKU)
hC2

as an ∞-category. This is in fact the correct approach, as a special case of Galois descent.

Theorem 2.3 (Galois descent, [MS16], Theorem 3.3.1). Let E → F be a faithful Galois
extension of E∞-rings with finite Galois group G. Then we have an equivalence of symmetric
monoidal ∞-categories

ModE ≃ (ModF)
hG.

†Throughout this talk, I am using Adams grading when writing spectral sequences. Usually people
depict spectral sequences in this way in pictures, while using a different grading in formulas; I find this
unhelpful.
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Remark 2.4. Compare this to the algebraic situation of the Galois extension R → C. The
statement ModR ≃ (ModC)

hC2 boils down to the statement that an R-vector space is
equivalent to a C-vector space together with a conjugate-linear endomorphism squaring
to the identity (a.k.a. a conjugation action).

We cannot simply apply Pic to this equivalence however, as the functor Pic does not
respect limits. This is why we introduced the more homotopical version pic in Variant 1.2
earlier.

Theorem 2.5 ([MS16], Proposition 2.2.3). The functor

pic : CAlg(Cat∞) −→ Sp⩾0

preserves small limits.

Remark 2.6. I write CAlg(Cat∞) for the ∞-category of (small) symmetric monoidal ∞-
categories. The forgetful functor CAlg(Cat∞) → Cat∞ preserves and detects limits, so
the underlying ∞-category of the symmetric monoidal limit is computed as a limit of
∞-categories. Limits in Sp⩾0 are computed as connective covers of limits in Sp, using that
τ⩾0 : Sp → Sp⩾0 is right adjoint to the inclusion (as with any t-structure; see [HA, §1.2.1]).

One should be a little careful in applying the above result about pic, because so far, I have
been applying pic to large ∞-categories, rather than small ones. I will include the details
now, but as this is a more technical point, the reader can safely skip this on first reading.

Proposition 2.7. The functor
pic : PrL −→ Ŝp⩾0

lands in small spectra, and the resulting functor

pic : PrL −→ Sp⩾0

preserves small limits.

Proof. The inclusion‡

PrL ⊆ Ĉat∞

preserves small limits by [HTT, Proposition 5.5.3.13], where the target denotes the (very
large) ∞-category of potentially large ∞-categories. Interpreting Theorem 2.5 one universe
higher, we obtain a functor

pic : Ĉat∞ −→ Ŝp⩾0, C 7−→ pic(C)

to potentially large connective spectra, and this functor preserves large limits. Precom-
posing this with the inclusion of PrL, we obtain a functor

pic : PrL −→ Ŝp⩾0, C 7−→ pic(C)
‡Beware that this is not a full subcategory.
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that preserves small limits by the previous comment. By [MS16, Remark 2.1.4], this lands
in small spectra. Lastly, the inclusion of small spectra into potentially large spectra also
preserves small limits, finishing the argument. ■

Corollary 2.8. We have an equivalence

pic(KO) ≃ τ⩾0 pic(KU).

Proof. This follows from Galois descent, using that limits in Sp⩾0 are computed as con-
nective covers of limits in Sp (see Remark 2.6). ■

This is what we need to start understanding Pic(KO).

Proposition 2.9. The homotopy fixed point spectral sequence for the C2-action on pic(KU) takes
the form

Ek,s
2

∼= Hs(C2, πk+spic(KU)) =⇒ πkpic(KO)

provided k ⩾ 0, and is strongly convergent in that range.

Remark 2.10. The spectral sequence does not converge to the indicated abutment for k < 0.
These negative homotopy groups are nevertheless interesting: for instance, the (−1)-st
homotopy group of pic(KU)hC2 computes the relative Brauer group of (KO, KU); see [GL21;
Mor23b].

In particular, for k = 0, this spectral sequence converges to Pic(KO), allowing us to
compute what we want, up to actually computing the spectral sequence.

Before we compute it, we recall what the homotopy groups of pic(A) look like, when A is
an E∞ ring: we have

πkpic(A) ∼=


Pic(A) if k = 0,

(π0A)× if k = 1,

πk−1A if k ⩾ 2.

This suggests that there might be a close connection to the HFPSS for π∗pic(KO) and
the HFPSS for π∗KO (shifted one to the right). This is indeed the case. Mathew and
Stojanoska prove that

• differentials in the HFPSS for π∗pic(KO) between entries lying in the range k+ s ⩾ 4
correspond to differentials in the HFPSS for π∗KO (shifted one to the right); see
[MS16, Comparison Tool 5.2.4];

• near the boundary of this range, there is a formula for differentials in the Picard
HFPSS in terms of differentials in the HFPSS for π∗KO; see [MS16, Theorem 6.1.1].

A picture of the Picard HFPSS is given in [MS16, §7, Figure 4]. What one finds in the
end is that on the E∞-page, there are four Z/2’s appearing in the 0-stem. In particular
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this shows that #Pic(KO) = 8. But we already know that Pic(KO) contains Z/8 as a
subgroup, so we conclude that

Pic(KO) ∼= Z/8,

being generated by ΣKO.

3 The K(n)-local Picard group

Next, we turn to the main topic of today, which is

Pic(SpK(n)).

Unlike the Picard group of all spectra, this group is very complicated. At height 1 it is
given by

Pic(SpK(1))
∼=

{
Z2 × Z/4 × Z/2 if p = 2,

Zp × Z/2(p − 1) if p is odd.

Remark 3.1. If one likes the interpretation of the Picard group as elements on which we
can index homotopy groups, this computation has the following fun implication. At odd
primes p, the number 1

2 is a p-adic integer, so one can talk about π1/2(X) when X is a
K(1)-local spectrum. (In fact, at every height, the K(n)-local Picard group has a Zp in it.)

The Z/2 in the p = 2 case is special: it is an exotic Picard element. This means the
following: Hopkins–Mahowald–Sadofsky define an algebraic approximation

Pic(SpK(n)) −→ Picalg
n ,

and elements in the kernel κn of this map are called exotic, because “algebra cannot
distinguish between them”.

In general, we do not know if this map to the algebraic approximation is surjective. Even
the algebraic approximation itself is very hard to compute. Our knowledge is almost
completely concentrated in heights 2 and below, and computing the height 2 case took a
lot of work by a lot of mathematicians. An overview of the current situation is given in
the introduction of [Bob+24].

Contrast this with the extremely simple case of Pic(En), which by a similar argument as
in Example 1.5 is isomorphic to Z/2 for all heights and all primes. We could hope to set
up a mechanism of going from this easy case to the hard case, in a similar way as before.
This is in fact possible, because there is an equivalence

SK(n) ≃ EhG
n ,

where G denotes the Morava stabiliser group, and En denotes Morava E-theory. However,
this formula is only true if one interprets the right-hand side as some sort of continuous
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fixed points: G carries a (profinite) topology and in some sense acts continuously on En.
The fixed points should take this continuity into account.

This notion of continuity is subtle. For instance, it cannot be appropriately described as
a functor BG → Sp, where BG is the ∞-category underlying the topological category
with one point and G as its endomorphisms. Devinatz and Hopkins [DH04] describe
a way to make this continuity precise. We can rephrase their constructions in more
modern terminology as saying that they turn Morava E-theory into an object of condensed
mathematics.

3.1 Intermezzo: condensed mathematics

Definition 3.2. Let ProFin denote the category of profinite sets. This can be turned into
a site by defining a cover to be a family of maps that contains a finite subfamily that is
jointly surjective.

Definition 3.3. Let C be an ∞-category with limits. The ∞-category Cond(C) of con-
densed objects of C is the ∞-category of (hypercomplete) sheaves on ProFin with values
in C.

One should think of an object of Cond(C) as an object of C “equipped with a topology”.
If X is a condensed object and S a profinite set, then X(S) should be thought of as the
object of “maps from S into X”. For example, X(∗) is the ‘underlying object’, and if
S = N ∪ {∞ }, then X(S) should be interpreted as “convergent sequences in X with a
chosen limit point”.

Example 3.4. Let G be a profinite group (e.g., the Morava stabiliser group). Then G
represents the functor Cont(−, G) of continuous maps from profinite sets into G. This
is a condensed group (because the site is subcanonical), so that G define an object of
Cond(Grp). This condensed group is commonly denoted by G, or perhaps even simply
by G. ▲

Next, there is also a notion of an object with a continuous G-action, if G is a profinite
group.

Definition 3.5. Let ProFinG denote the category of profinite sets with a continuous (in
the usual sense) G-action. We turn this into a site in the same way as ProFin.

Definition 3.6. Write CondG(C) for the ∞-category of (hypercomplete) sheaves on
ProFinG with values in C.

If X is now a condensed G-object, then X(G) should be thought of as the underlying
object, while X(∗) should be thought of as the “continuous fixed points XhG”. In general,
if H ⊆ G is a subgroup, then X(G/H) should be thought of as the continuous H-fixed
points.
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Remark 3.7. Alternatively, one can consider the ∞-category of G-objects in Cond(C). This
should be equivalent to the above description by some formal nonsense argument, but I
did not check this in detail.

To motivate this a little more, consider the following similar example.

Example 3.8. Let G be a finite group, and let FinG be the category of finite G-sets. Then
a (hypercomplete) sheaf of spectra on FinG should be§ the same as a naive G-spectrum.
Under this correspondence, X(G) is the underlying spectrum, and X(G/H) is the H-fixed
points. ▲

3.2 Condensed E-theory

Going forward, let G denote the Morava stabiliser group. We can encode the continuity
of the action of G on En by upgrading En to be a sheaf on ProFinG. Up to some technic-
alities, this is essentially a reformulation of the constructions of Devinatz–Hopkins; cf.
Remark 3.10.

Proposition 3.9 ([Mor23a], §2.3). There exists a hypercomplete sheaf E of E∞-rings on ProFinG,
satisfying

(1) E(G/e) ≃ En,

(2) E(G/H) ≃ EhH
n if H ⊆ G is a finite subgroup,

(3) E(G/G) ≃ SK(n).

We describe part of the proof, without worrying about the more technical points.

Proof sketch. Devinatz and Hopkins produce a sheaf

E δ : Finop
G −→ SpK(n).

We now form the left Kan extension in the K(n)-local setting:

Finop
G SpK(n).

ProFinop
G

E δ

Postcomposing this left Kan extension with the inclusion SpK(n) ↪→ Sp yields the desired
functor E . Item (3) then follows from [DH04]. ■

Remark 3.10. More concretely, if H ⊆ G is a closed subgroup, then E(G/H) is given by

E(G/H) = LK(n) colim
U⊇H

E δ(U),

§I phrase it like this because I did not check this in detail.
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where the colimit ranges over open subgroups U containing H such that G/U is finite.
This is exactly how Devinatz–Hopkins define the continuous fixed points spectrum EhH

n .
Note that this is a K(n)-local colimit, rather than a colimit in all spectra; this is why we
took the left Kan extension in SpK(n) rather than in Sp.

Remark 3.11. I follow Mor in denoting this sheaf by E . If one wants to take the condensed
mindset seriously, then an argument could be made for abusing notation and simply
writing En instead. (In the same way that one might not distinguish between the notation
for a topological space and its underlying set, but rather relying on context to make this
distinction clear.) See Remark 5.2 as well.

The question arises: what plays the role of a ‘continuous HFPSS’? This turns out to be a
spectral sequence naturally associated to the site ProFinG: the descent spectral sequence.

4 Descent spectral sequences

To make the construction more transparent, let us work in the general context of a
site T . (If one wishes to be extra fancy, one can set up this story in an arbitrary ∞-topos
instead.) Those unfamiliar with sites can instead think of spectrum-valued sheaves on a
topological¶ space; this will be a helpful intuition anyway.

Let F be a sheaf of spectra on T . Suppose we want to understand the homotopy groups
of the sections of F at a fixed X ∈ T , i.e., the homotopy groups of the spectrum F(X). As
a first approximation, we will consider the homotopy sheaves of F.

Definition 4.1. Consider the presheaf of abelian groups on T given by

πn ◦ F : T op −→ Ab, Y 7−→ πn(F(Y)).

The sheafification of this presheaf is the n-th homotopy sheaf of F, and is denoted by
πnF.

Remark 4.2. The sheaf πkF can be wildly different from πk ◦ F. For instance, it can happen
(in interesting, non-degenerate examples!) that πkF vanishes identically, while πk(F(X))

is nonzero for many X. Roughly speaking, the reason for this is that when sheafifying
πk ◦ F, we forget the homotopies. For example, if x ∈ πk(F(X)) becomes zero after
pulling it back to a cover p : Y → X, then x becomes zero in (πkF)(X). However, the
homotopy between p∗(x) and 0 need not descend down to X, so x need not be zero in
πk(F(X)).

As such, πkF is much simpler than πk ◦ F. This is a feature, not a bug: as yet another
instance of going from algebra to topology, there is a spectral sequence starting with the

¶Bear in mind that when considering the site associated to a topological space, the topological space
should not be viewed in a homotopy-invariant way: the site ‘sees’ much more than just the underlying
homotopy type of the topological space. In fact, for sober spaces (e.g., Hausdorff spaces) can be recovered
from their site of opens (a.k.a. its locale).
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homotopy sheaves, and ending with the homotopy groups we were interested in. This is
the descent spectral sequence (DSS), which is of the form (for X ∈ T a fixed object)

Ek,s
2

∼= Hs(X, (πk+sF)(X)).

Here Hs(X,−) denotes sheaf cohomology, i.e., the s-th derived functor of evaluation at X.
If X is the terminal object of T , then these sheaf cohomology groups are also denoted by
Hs(T ,−), and thought of as the T -sheaf cohomology.

Remark 4.3. In reality, this spectral sequence is not one of abelian groups, but is one
of sheaves of abelian groups on T : its pages live in the abelian category Sh(T ; Ab) of
sheaves of abelian groups on T .

Convergence in general can be quite problematic, but in the applications later on, it will
converge. I will however not give the proofs for this; in other words, I will simply not
worry about convergence in this talk.

Remark 4.4. Note that the 0-th sheaf cohomology is simply evaluation at X, so that the
(πkF)(X) appear on the bottom of the E2-page.

Example 4.5. Let T be the site FinG of finite G-sets, for G a finite group, as in Example 3.8.
The DSS for T can be identified with the HFPSS for the naive G-spectrum. ▲

As such, we will think of the DSS for the site ProFinG as a version of the ‘continuous
HFPSS’. It is a spectral sequence of the form (where X is a condensed G-spectrum)

Ek,s
2

∼= Hs(ProFinG, X) =⇒ πkX(∗).

5 The K(n)-local Picard spectral sequence

We are now ready to start setting up the relevant spectral sequence for computing Picard
groups. We mimic the approach from before, first setting up a ‘linear variant’, of which a
shifted version will ultimately appear in the Picard spectral sequence.

Theorem 5.1 ([Mor23a], §2.3).

(1) There is an isomorphism of condensed abelian groups (i.e., sheaves of abelian groups on
ProFin)

πkE ∼= Cont(−, πkEn),

where on the right-hand side, we consider πkEn with its natural profinite topology.

(2) The DSS for E(G/G) is isomorphic to the K(n)-local En-based Adams spectral sequence

Ek,s
2

∼= Hs
cont(G, πk+sEn) =⇒ πkSK(n).
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Remark 5.2. The expression Cont(−, πkEn) is the condensed abelian group represented by
the profinite abelian group πkEn. It is also commonly denoted by πkEn, in which case the
isomorphism would read as

πkE ∼= πkEn,

further emphasising the idea that E can be thought of as En “with a topology”. This fits
nicely with the abuse of notation suggested in Remark 3.11.

Remark 5.3. The identification of the E2-pages is a statement about continuous group
cohomology (in the sense of topological groups) agreeing with sheaf cohomology for the
site ProFinG. This is an identification which one cannot expect to hold in general. In the
general case, the latter notion is arguably the better one. For instance, if X is a general
spectrum, then then we can define a sheaf E ⊗̂ X as the K(n)-localisation of E ⊗ X (the
sheafification of level-wise tensoring with X). Its homotopy sheaves are a condensed
version of completed Morava E-homology, usually denoted E∧

n (X) or E∨
n (X). Writing

E∧
k (X) for πk(E ⊗̂ X), the resulting DSS would be of the form

Ek,s
2

∼= Hs(ProFinG, E∧
k (X)) =⇒ πk LK(n) X.

One cannot expect the topological version of such a setup to work in as much generality.

The K(n)-local En-based Adams spectral sequence is well studied, making it useful for
our goal of computing the K(n)-local Picard group.

To set up a spectral sequence for this Picard group, we need to lift the equivalence

SK(n) ≃ EhG
n ,

with the right-hand side the continuous fixed points as before, to a statement of the form

SpK(n) ≃ ModhG
En

.

In particular, we need to equip ModEn with the structure of a condensed G-object in ∞-
categories. This should come from the condensed G-structure on En. Concretely, consider
the composite

Mod(−)(SpK(n)) ◦ E : ProFinop
G −→ CAlg(PrL), X 7−→ ModE(X)(SpK(n)).

Theorem 5.4 ([Mor23a], Theorem 3.1). The functor Mod(−)(SpK(n)) ◦ E is a hypercomplete
sheaf of presentable ∞-categories.

Using that pic preserves small limits (or specifically, the formulation of Proposition 2.7),
we deduce the following.

Corollary 5.5. The functor

pic(E) : ProFinop
G −→ Sp⩾0, X 7−→ pic(ModE(X)(SpK(n))

is a hypercomplete sheaf of connective spectra.
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The DSS for pic(E) is what we were after. It is of the form

Ek,s
2 = Hs(ProFinG, πk+spic(E)) =⇒ πkpic(SpK(n)). (5.6)

Again, we can compute this in terms of more familiar objects.

Proposition 5.7 ([Mor23a], §3.2). We have isomorphisms

πtpic(E) ∼= πtpic(En)

and

Hs(ProFinG, πtpic(E)) ∼= Hs
cont(G, πtpic(En)).

The same techniques that were used to relate the Picard spectral sequence for a finite
Galois extension to the HFPSS for the Galois extension carry over to this situation. (Bru-
tally summarised, this is essentially because it is ‘just’ a sheafy version of the latter.) This
computes the spectral sequence (5.6) in a range, and some addional work has to be done
to compute the rest of the zero-stem. Mor carries this out in [Mor23a, §4]; I will very
briefly summarise some of his results.

In the end, this allows one to recover the height 1 calculation. It also gives, at any height,
a structural explanation of the exotic Picard elements. (Beware that I am ever so slightly
simplifying the following result.)

Theorem 5.8. The algebraic Picard group Picalg
n is detected by elements in stem 0 and filtration 1

in the spectral sequence (5.6).

In particular, this gives one a spectral-sequence way of thinking about the question of
when the algebraic approximation map

Pic(SpK(n)) −→ Picalg
n

is surjective: this happens if and only if the elements in stem 0 and filtration 1 do not
support differentials. The exotic Picard group is represented by elements in stem 0 and
filtration at least 2.

Example 5.9. At height n = 1, the 0-stem of the spectral sequence (5.6) is concentrated in
filtration 0 at odd primes, while at the prime 2 it has elements in filtration 0, 1 and 3. The
exotic Z/2 from before is detected by this element in filtration 3, which does not support,
nor is it hit by differentials. ▲
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