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These are (somewhat expanded) notes for a talk I gave in the Freudenthal topology seminar
in Utrecht. The talk was intended as an introduction to algebraicity results of Pstrągowski
[Pst21], Patchkoria and Pstrągowski [PP21], and more recently Barkan [Bar23b]. I will
give some pointers to these papers for readers who want to dive deeper, but I will not
give a reference for every statement. When I omit explanations however, these sources do
provide detailed proofs. If you find mistakes in these notes (big or small), please email
me!

Remark. It should be mentioned that the papers [PP21] and [Bar23b] do much more
than prove chromatic algebraicity. Patchkoria and Pstrągowski set up a very general
framework for derived ∞-categories of stable ∞-categories, leading to a very general
algebraicity theorem. Barkan sets up a categorical language (in terms of modules over the
∞-category of filtered spectra) for thinking about these things, and then proves a general
monoidal algebraicity theorem using this. In these notes, I have tried to extract a few
essential ideas and focus only on the case of chromatic homotopy theory. The reader who
wishes to delve into these papers can expect to find a much larger treasure trove than this
map suggests them to be.

Warning. My notation for the indices differs slightly from the cited sources.

1 Motivation

If E is a ring spectrum (with some additional conditions), one can ask how much E
“remembers” about the stable homotopy groups of spheres. More formally, one writes
down a resolution of the sphere in terms of smash powers of E, and considers the
difference between the sphere and the limit of this resolution. Often this limit is the E-
localisation of the sphere. The resolution itself gives rise to a spectral sequence computing
its limit: the E-based Adams spectral sequence. It is of signature

E2
s,t

∼= Exts,t
E∗E(E∗, E∗) =⇒ πt−s(SE).
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The left-hand side denotes Ext groups in the abelian category of (graded) E∗E-comodules,
which we denote by ComodE∗E. One likes to think of the E2-page as algebraic, because
it can be defined purely in terms of the homological algebra of E∗E-comodules. The
abutment π∗SE on the other hand we think of as topological. The spectral sequence
moves one from algebra to topology, and the difference between these two realms is
recorded by the differentials.

One gets different spectral sequences for varying E. Adams’ original spectral sequence is
the case E = HFp, which converges to π∗(S∧

p ). The Adams–Novikov spectral sequence
is the case E = MU, which converges to π∗S. Both of these are difficult in that they
look at all of the sphere at once (even at just one prime, the sphere is still extremely
complicated). The philosophy of chromatic homotopy theory is that, at every prime, a
spectrum consists of different pieces of different ‘heights’. There is an Adams spectral
sequence that computes the “height ⩽ n” part of the p-local sphere: this is obtained by
letting E be Morava E-theory at height n. The resulting spectral sequence converges to
the homotopy groups of LnS(p), the “height ⩽ n version” of the p-local sphere.

In this talk we focus on this spectral sequence. For reasons that will become more apparent
later, we want to work with Johnson-Wilson theory E(n) rather than Morava E-theory En.
Recall that E(n) is a ring spectrum with homotopy groups

π∗E(n) ∼= Z(p)[v1, . . . , vn−1, v±n ], where |vi| = 2(pi − 1).

Observe that π∗E(n) is concentrated in degrees that are multiples of 2(p − 1). It turns out
that we make this change without any issues: the abelian category ComodE∗E and the
resulting Adams spectral sequence do not change if we take E to be Morava E-theory or
Johnson–Wilson theory.

Henceforth, we will fix a prime p and height n, and E will denote Johnson-Wilson theory E(n) at
the prime p.

The E-based Adams spectral sequence has some interesting features: it becomes simpler
as the prime gets larger.

(i) If p > n + 1, then this spectral sequence has a horizontal vanishing line on the
E2-page. As a consequence, there are only finitely many differentials d1, . . . , dr, and
collapses after that.

(ii) If 2(p − 1) > n2 + n, then the spectral sequence even collapses on the E2-page (for
degree reasons), i.e., there are no differentials.

This second point suggests that there is no difference between the algebraic situation and
the topological one if p is sufficiently large with respect to n. This is indeed the case.

Theorem (Crude version). If 2(p − 1) > n2 + n, then there is an equivalence of categories

hSpE ≃ hD(E∗E).
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Here hSpE is the homotopy category of E-local spectra, which we think of as p-local
spectra of height ⩽ n. By D(E∗E), we mean the derived ∞-category of differential E∗E-
comodules. I will not define this category further, but suffice it to say that it is the derived
∞-category of an abelian category (namely, that of comodules equipped with a differential;
do note this is not the same as the derived category of ComodE∗E).

The above equivalence becomes stronger as the prime gets larger. To make this precise,
we think about how strict the inequality 2(p − 1) > n2 + n is: we insert an α ⩾ 1 and
write 2(p − 1) ⩾ n2 + n + α.

Theorem A (Patchkoria–Pstragowski). If 2(p− 1) ⩾ n2 + n+ α, then there is an equivalence

hαSpE ≃ hαD(E∗E).

Here hαC denotes the homotopy α-category of C , i.e., the ∞-category obtained by (α − 1)-
truncating the mapping spaces in C . For instance, the usual homotopy category of C is
h1C . In general, hαC is an α-category.

Remark 1.1. To see more concretely that this is indeed a strengthening, suppose that α ⩾ 2
and that the inequality from Theorem A holds, so that we get an equivalence on homotopy
2-categories. Recall that the homotopy category of a stable ∞-category has a natural
triangulated structure. It turns out that this triangulated structure is only an invariant of
the homotopy 2-category. Hence, if α ⩾ 2, we find that the equivalence hSpE ≃ hD(E∗E)
from the crude version can even be made into a triangulated equivalence.

Remark 1.2. Theorem A has a rich history. Bousfield [Bou85] considered the height 1 case
at odd primes. Franke announced a proof of Theorem A, but Patchkoria later found a
mistake in this proof. Pstrągowski [Pst21] proved Theorem A in his thesis with the more
restrictive bound p − 1 ⩾ n2 + n + α (i.e., only allowing primes of half the size). Later
Patchkoria and Pstrągowski [PP21] gave an improved version of Pstrągowski’s original
proof, and thereby proved Theorem A with the bound as above.

More recently, Barkan proved a symmetric monoidal version.

Theorem B (Barkan). If 2(p − 1) ⩾ n2 + (α + 3)n + α, then there is a symmetric monoidal
equivalence

hαSpE ≃ hαD(E∗E).

I’ll give an outline of the proof of Theorem A, and then discuss the modifications and
further technology needed to prove Theorem B.

2 Proof outline

The proof is a detailed analysis of what it means to “pass from algebra to topology”.
Going forward, we will write C for either SpE or D(E∗E). We will decompose C as a
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tower

C −→ · · · −→ Mk(C ) −→ Mk−1(C ) −→ · · · −→ M0(C ) ≃ ComodE∗E.

This is a limit diagram, where the bottom is equivalent to the algebraic category ComodE∗E.
The other Mk(C ) can be thought of as intermediate stages in passing from algebra to
topology.

This tower has two special properties (having fixed an α ⩾ 1):

(i) for k large enough, we have an equivalence hαC ≃ hαMk(C );

(ii) for k small enough, we have an equivalence Mk(SpE) ≃ Mk(D(E∗E)).

When these two ranges overlap, we get an algebraicity result. We will determine these
two ranges explicitly, and thereby prove the bounds stated in Theorem A and Theorem B.

3 Construction of the tower

To construct the tower, we need a ‘derived ∞-category of C ’. This might sound strange at
first: C is a stable ∞-category, which we like to think of as ‘already derived’. By a derived
category of C , we mean deriving it with respect to the E-homology functor E∗(−). Objects
in this derived category can be thought of as formal E-based Adams resolutions of objects
of C . The precise definition for these purposes can get technical however, so I will omit
any specific details going forward. We will write D(C ) for this derived ∞-category of C .
It can be made symmetric monoidal, and it has a natural t-structure that is compatible
with the monoidal structure.

Example 3.1. For those who know what the following words mean: one incarnation of
D(C ) one can take is hypercomplete E-based synthetic spectra, as defined by Pstragowski
[Pst22]. This is what Pstragowski used in [Pst21], and in the end it proves a version of
Theorem A with the suboptimal bound p − 1 ⩾ n2 + n + α. A large part of Patchkoria–
Pstrągowski [PP21] is devoted to a different definition of D(C ), based on injectives rather
than projectives, that yields a better range for this theorem. ▲

Write D⩾0(C ) for the connective part of the t-structure on D(C ). Write 1⩽k for the k-
truncation of the monoidal unit. This is naturally a commutative algebra object of D⩾0(C ),
so we can consider module objects over it.

Definition 3.2. Let 0 ⩽ k ⩽ ∞. The ∞-category of potential k-stages in C , denoted by
Mk(C ), is the full subcategory of

Mod1⩽k(D⩾0(C ))

on those X such that
X �1⩽k 1⩽0

is a discrete object, i.e., lives in the heart of Mod1⩽k(D⩾0(C )).
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Proposition 3.3.

• We have equivalences M0(C ) ≃ ComodE∗E and M∞(C ) ≃ C .

• For every k, the ∞-category Mk(C ) is a (k + 1)-category.

Warning 3.4. The ∞-category Mk(C ) is generally not closed under the relative tensor
product �1⩽k . This is similar to the usual difference between the tensor product and the
derived tensor product: the derived tensor product can have nonzero higher homology
groups. The smash product of spectra is not ‘derived’ from the perspective of E-homology,
so the same can happen in this case. The category Mk(C ) was defined using a discreteness
condition, and as such will in general not be closed under the tensor product. As such, it
is not a symmetric monoidal ∞-category.

For every k, truncation defines a functor Mk+1(C ) → Mk(C ), resulting in a tower as
claimed. For these specific C , this tower is actually a limit diagram, i.e., it identifies C as
the limit

C ≃ lim
k

Mk(C ).

This is not a formal consequence of the setup: it is related to the convergence of the
Adams spectral sequence.

This tower is an important one: it is the tower used to set up Goerss–Hopkins obstruction
theory from an ∞-categorical perspective; see [PV22]. We will use this obstruction theory
to prove the existence of the two ranges discussed above.

4 The first range

We need the following fact.

Proposition 4.1. If p > n + 1, the abelian category ComodE∗E has cohomological dimension
n2 + n.

Meaning, if M, N ∈ ComodE∗E are comodules, then if s > n2 + n, we have for all t that

Exts,t
E∗E(M, N) = 0.

(Bear in mind this does not hold if M and N are merely objects in the derived category of
ComodE∗E; they need to be ‘honest’ comodules.)

To prove the existence of the first range, note that because the tower is a limit diagram,
it suffices to prove that Mk+1(C ) → Mk(C ) induces an equivalence on homotopy α-
categories for k large enough. We will even determine the explicit bound needed for
this.

The proof uses (linear) Goerss–Hopkins obstruction theory, which says the following. For
every k ⩾ 0 and every object X ∈ Mk(C ), there is an obstruction to lifting X to an object
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of Mk+1(C ) that lives in

Extk+3, k+1
E∗E (X �1⩽k 1⩽0, X �1⩽k 1⩽0).

Since X �1⩽k 1⩽0 is discrete, it lives in M0(C ), which can be identified with ComodE∗E. It
follows that these obstructions vanish if k + 3 ⩾ n2 + n + 1, in which case we see that the
functor Mk+1(C ) → Mk(C ) is essentially surjective.

We want more however: we want an equivalence on (truncated) mapping spaces too. Sup-
posing that X, Y ∈ Mk(C ) are objects which lift to Mk+1(C ), there is also an obstruction
theory to lifting a map X → Y to Mk+1(C ), and this lives in

Extk+2, k+1
E∗E (X �1⩽k 1⩽0, Y �1⩽k 1⩽0).

This lift is unique if the same Ext group of bidegree (k + 1, k + 1) vanishes. We learn that
hMk+1(C ) → hMk(C ) is an equivalence whenever k + 1 ⩾ n2 + n + 1.

More generally, the obstruction to lifting an α-morphism from Mk to Mk+1 lives in
bidegree (k + 3 − α, k + 1), and this lift is unique if the Ext group of bidegree (k + 2 −
α, k + 1) vanishes. We learn that hαMk+1(C ) → hαMk(C ) is an equivalence whenever

k + 2 − α ⩾ n2 + n + 1 ⇐⇒ k ⩾ n2 + n + α − 1.

This is the advertised first range.

5 The second range

This is the more technical part of the argument, so for time reasons I will be more brief.
The methods are inspired by the original height 1 work by Bousfield [Bou85].

The crucial observation is that π∗E(n) are concentrated in degrees that are multiples of
2(p − 1). This allows one to define a functor (where the left-hand side denotes the full
subcategory of injective comodules)

β : Comodinj
E∗E −→ hkC

which is an inverse to homology: there is a natural isomorphism E∗(β(M)) ∼= M. This
is done using obstruction theory again. At some point we can no longer guarantee that
obstructions vanish, so that we can only define a functor to hkC instead of C itself. For
this, we need k ⩽ 2(p − 1)− 1; this will be our second range.

This functor induces an adjunction

D⩾0(ComodE∗E) Mod1⩽k(D⩾0(C )).
β∗

β∗
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One proves that this is monadic, i.e., it witnesses that Mod1⩽k(D⩾0(C )) is the category of
algebras over the monad β∗β∗:

Mod1⩽k(D⩾0(C )) ≃ Algβ∗β∗(D⩾0(ComodE∗E)).

The upshot of this is that the left-hand side turns out to be independent of C . This
equivalence also respects the condition defining the subcategory Mk(C ), so that this
category is also independent of C :

Mk(SpE) ≃ Mk(D(E∗E)) whenever k ⩽ 2(p − 1)− 1.

Having found the two ranges, we deduce an algebraicity result precisely when they
overlap. This happens when

2(p − 1)− 1 ⩾ n2 + n + α − 1 ⇐⇒ 2(p − 1) ⩾ n2 + n + α,

which is the bound stated in Theorem A.

6 The monoidal version

Our next goal is to discuss Barkan’s adaptations of the above proof strategy to the
symmetric monoidal case.

The first hurdle to overcome is that Mk(C ) is not closed under the tensor product; see
Warning 3.4. The solution is to not consider it as a symmetric monoidal ∞-category, but
as an ∞-operad.

As an informal refresher on ∞-operads: an (coloured) ∞-operad is an ∞-category O

equipped with multi-mapping spaces: for each r ⩾ 0 and for all objects X1, . . . , Xr, Y, there
is a space

MapO(X1, . . . , Xr; Y)

of morphisms of arity r. These should be compatible in natural ways: one should be able
to compose multi-maps with ordinary morphisms, but also plug in multi-mappings into
other multi-mappings (of different arities), and these should satisfy the conditions one
expects them to have.

Example 6.1. A symmetric monoidal ∞-category C defines an ∞-operad C � whose
multi-mapping spaces are given by

MapC �(X1, . . . , Xr; Y) = MapC (X1 � · · ·� Xr, Y). ▲

Remark 6.2. In fact, a symmetric monoidal ∞-category is usually defined as a particular kind
of ∞-operad. Roughly speaking, an ∞-operad O is a symmetric monoidal ∞-category if
for all r and all X1, . . . , Xr, the functor

MapO(X1, . . . , Xr; −)
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is corepresentable, say by
⊗{ Xi }i⩽r, and if natural “associator” morphisms are equi-

valences. (This last condition is necessary because otherwise, there is no reason why⊗{ X1, X2, X3 } is equivalent to (X1 � X2)� X3, where we write � for the resulting binary
tensor product.) In terms of Lurie’s model [HA, Ch. 2], an ∞-operad O� → Fin∗ is
defined to be a symmetric monoidal ∞-category when the map is a cocartesian fibration.

We upgrade Mk(C ) to an ∞-operad in the following way.

Definition 6.3. Let M �
k (C ) denote the ∞-operad with underlying ∞-category Mk(C ),

equipped with multi-mapping spaces

MapM �
k (C )(X1, . . . , Xr; Y) = Map(X1 �1⩽k · · ·�1⩽k Xr, Y),

where on the right-hand side we take maps in Mod1⩽k(D⩾0(C )). More formally: M �
k (C )

is the full suboperad of Mod1⩽k(D⩾0(C ))� on the objects in Mk(C ).

The truncation functors can be naturally upgraded to maps of ∞-operads, resulting in a
limit tower of ∞-operads

C � −→ · · · −→ M �
k (C ) −→ · · · −→ M �

0 (C ) ≃ Comod�
E∗E.

Even though the top and bottom of this tower are symmetric monoidal ∞-categories, the
intermediate stages are not.

Our goal now is to prove a monoidal version of the two ranges, or perhaps find different
ranges in which the monoidal analogues hold. It turns out that the second range* does
not change (as the original setup was actually already sufficiently compatible with the
monoidal structure), so I will focus on the first range.

At least the desired statement is straightforward to generalise: there is also a notion of a
‘homotopy α-operad’ hαO , namely where we (α − 1)-truncate the multi-mapping spaces.
To find a range in which hαC � is equivalent to hαM

�
k (C ) is not very straightforward

however. Namely, we would like to find a range for k in which hαM
�
k+1(C ) → hαM

�
k (C )

is an equivalence, i.e., it induces an equivalence on

τα−1 Map(X1, . . . , Xr; Y)

for all r. This is a problem: when we take a tensor product in this derived category, we
introduce higher homotopy groups, so that we need stricter and stricter bounds on the
Ext-degree before we can guarantee that the relevant Ext-groups vanish. This bound
grows with r, which is a bad thing if we want to prove something for all r ⩾ 0.

What saves us is that we can restrict r to be below α + 3, relying on Barkan’s earlier arity
approximation results.

*In [Bar23b, Definition 2.33], this range is referred to as a degeneracy structure.

8



Theorem 6.4 (Barkan [Bar23a]). Let E be a complete symmetric monoidal m-category. Then
there is a natural equivalence

CMon(E ) ≃ CMon⩽m+2(E ).

Remark 6.5. Barkan gives the following beautiful motivation for this result. In the defini-
tion of a commutative ring, every axiom involves at most three variables; note that abelian
groups form a 1-category. In the definition of a symmetric monoidal category, every axiom
involves at most four variables; note that categories form a 2-category. Barkan’s result is
that this pattern continues: in an m-category, to define a commutative monoid, you only
need to specify the coherences up to artiy m + 2.

We apply this to E = Catα. As α-categories form an (α+ 1)-category Catα, we find that for
any ∞-operad O , the approximation hαO is uniquely determined by its multi-mapping
spaces of arities ⩽ α + 3. Applying this to our problem shows we only need to consider
the cases where r ⩽ α + 3. We then use that if p > n + 1, then the Tor dimension of
ComodE∗E is n. When taking a tensor product of r objects, we are really taking r − 1 tensor
products. In the end, this means that we can guarantee that hαM

�
k+1(C ) → hαM

�
k (C ) is

an equivalence whenever

k + 2 − α ⩾ n2 + n︸ ︷︷ ︸
Ext dimension

+ (α + 2)n︸ ︷︷ ︸
α + 2 tensor products

+1,

i.e., whenever
k ⩾ n2 + (α + 3)n − 1.

Combining this with the second range k ⩽ 2(p − 1)− 1, we arrive at the bound

2(p − 1) ⩾ n2 + (α + 3)n,

which is the bound in Theorem B.
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